國家衛生研究院 NHRI:Item 3990099045/14856
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 853943      在线人数 : 1345
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14856


    题名: Herbal formula PM012 induces neuroprotection in stroke brain
    作者: Wu, KJ;Wang, YS;Hung, TW;Bae, EK;Chen, YH;Kim, CK;Yoo, DW;Kim, GS;Yu, SJ
    贡献者: Center for Neuropsychiatric Research
    摘要: Stroke is a major cause of long-term disability world-wide. Limited pharmacological therapy has been used in stroke patients. Previous studies indicated that herb formula PM012 is neuroprotective against neurotoxin trimethyltin in rat brain, and improved learning and memory in animal models of Alzheimer's disease. Its action in stroke has not been reported. This study aims to determine PM012-mediated neural protection in cellular and animal models of stroke. Glutamate-mediated neuronal loss and apoptosis were examined in rat primary cortical neuronal cultures. Cultured cells were overexpressed with a Ca++ probe (gCaMP5) by AAV1 and were used to examine Ca++ influx (Ca++i). Adult rats received PM012 before transient middle cerebral artery occlusion (MCAo). Brain tissues were collected for infarction and qRTPCR analysis. In rat primary cortical neuronal cultures, PM012 significantly antagonized glutamate-mediated TUNEL and neuronal loss, as well as NMDA-mediated Ca++i. PM012 significantly reduced brain infarction and improved locomotor activity in stroke rats. PM012 attenuated the expression of IBA1, IL6, and CD86, while upregulated CD206 in the infarcted cortex. ATF6, Bip, CHOP, IRE1, and PERK were significantly down-regulated by PM012. Using HPLC, two potential bioactive molecules, paeoniflorin and 5-hydroxymethylfurfural, were identified in the PM012 extract. Taken together, our data suggest that PM012 is neuroprotective against stroke. The mechanisms of action involve inhibition of Ca++i, inflammation, and apoptosis.
    日期: 2023-02-22
    關聯: PLoS ONE. 2023 Feb 22;18(2):Article number e0281421.
    Link to: http://dx.doi.org/10.1371/journal.pone.0281421
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1932-6203&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000942161600007
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85148548843
    显示于类别:[劉誠珍] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85148548843.pdf1810KbAdobe PDF119检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈