English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 904414      Online Users : 240
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/14920


    Title: Antiviral and antibacterial sulfated polysaccharide–chitosan nanocomposite particles as a drug carrier
    Authors: Yin, AY;Xu, J;Yang, CS;Hsu, SH
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: Drug delivery system (DDS) refers to the method of delivering drugs to the targeted sites with minimal risk. One popular strategy of DDS is using nanoparticles as a drug carrier, which are made from biocompatible and degradable polymers. Here, nanoparticles composed of Arthrospira-derived sulfated polysaccharide (AP) and chitosan were developed and expected to possess the capabilities of antiviral, antibacterial, and pH-sensitive properties. The composite nanoparticles, abbreviated as APC, were optimized for stability of morphology and size (~160 nm) in the physiological environment (pH = 7.4). Potent antibacterial (over 2 μg/mL) and antiviral (over 6.596 μg/mL) properties were verified in vitro. The pH-sensitive release behavior and release kinetics of drug-loaded APC nanoparticles were examined for various categories of drugs, including hydrophilic, hydrophobic, and protein drugs, under different pH values of the surroundings. Effects of APC nanoparticles were also evaluated in lung cancer cells and neural stem cells. The use of APC nanoparticles as a drug delivery system maintained the bioactivity of the drug to inhibit the proliferation of lung cancer cells (with ~40% reduction) and to relieve the growth inhibitory effect on neural stem cells. These findings indicate that the pH-sensitive and biocompatible composite nanoparticles of sulfated polysaccharide and chitosan well keep the antiviral and antibacterial properties and may serve as a promising multifunctional drug carrier for further biomedical applications.
    Date: 2023-02-23
    Relation: Molecules. 2023 Feb 23;28(5):Article number 2105.
    Link to: http://dx.doi.org/10.3390/molecules28052105
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1420-3049&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000948254800001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85149898217
    Appears in Collections:[徐善慧] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85149898217.pdf4061KbAdobe PDF132View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback