國家衛生研究院 NHRI:Item 3990099045/15034
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 909218      在线人数 : 794
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15034


    题名: Implications of the improvement in atmospheric fine particles: A case study of COVID-19 pandemic in northern Taiwan
    作者: Huang, CH;Ko, YR;Lin, TC;Cheng, YH;Chen, YC;Ting, YC
    贡献者: National Institute of Environmental Health Sciences
    摘要: The outbreak of COVID-19 pandemic in northern Taiwan led to the implementation of Level 3 alert measures during 2021 and thereby impacted the air quality significantly, which provided an unprecedented opportunity to better understand the control strategies on air pollutants in the future. This study investigated the variations in sources, chemical characteristics and human health risks of PM2.5 comprehensively. The PM2.5 mass concentrations decreased from pre-alert to Level 3 alert by 49.4%, and the inorganic ions, i.e., NH4+, NO3- and SO42-, dropped even more by 71%, 90% and 52%, respectively. Nonetheless, organic matter (OM) and elemental carbon (EC) simply decreased by 36% and 13%, which caused the chemical composition of PM2.5 to change so that the carbonaceous matter in PM2.5 dominated instead of the inorganic ions. Correlation-based hierarchical clustering analysis further showed that PM2.5 was clustered with carbonaceous matter during the Level 3 alert, while that clustered with inorganic ions during both pre-alert and post-alert periods. Moreover, 6 sources of PM2.5 were identified by positive matrix factorization (PMF), in which secondary nitrate (i.e., aging traffic aerosols) exhibited the most significant decrease and yet primary traffic-related emissions, dominated by carbonaceous matter, changed insignificantly. This implied that secondary traffic-related aerosols could be easily controlled when traffic volume declined, while primary traffic source needs more efforts in the future, especially for the reduction of carbonaceous matter. Therefore, cleaner energy for vehicles is still needed. Assessments of both carcinogenic risk and non-carcinogenic risk induced by the trace elements in PM2.5 showed insignificant decrease, which can be attributed to the factories that did not shut down during Level 3 alert. This study serves as a metric to underpin the mitigation strategies of air pollution in the future and highlights the importance of carbonaceous matter for the reduction in PM2.5.
    日期: 2023-05
    關聯: Aerosol and Air Quality Research. 2023 May;23(5):Article number 220329.
    Link to: http://dx.doi.org/10.4209/aaqr.220329
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1680-8584&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000972529100002
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159766740
    显示于类别:[陳裕政] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI000972529100002.pdf4394KbAdobe PDF123检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈