English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 848349      Online Users : 981
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/15130


    Title: Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies
    Authors: Li, X;Quick, C;Zhou, H;Gaynor, SM;Liu, Y;Chen, H;Selvaraj, MS;Sun, R;Dey, R;Arnett, DK;Bielak, LF;Bis, JC;Blangero, J;Boerwinkle, E;Bowden, DW;Brody, JA;Cade, BE;Correa, A;Cupples, LA;Curran, JE;de Vries, PS;Duggirala, R;Freedman, BI;Göring, HHH;Guo, X;Haessler, J;Kalyani, RR;Kooperberg, C;Kral, BG;Lange, LA;Manichaikul, A;Martin, LW;McGarvey, ST;Mitchell, BD;Montasser, ME;Morrison, AC;Naseri, T;O’Connell, JR;Palmer, ND;Peyser, PA;Psaty, BM;Raffield, LM;Redline, S;Reiner, AP;Reupena, MS;Rice, KM;Rich, SS;Sitlani, CM;Smith, JA;Taylor, KD;Vasan, RS;Willer, CJ;Wilson, JG;Yanek, LR;Zhao, W;Abe, N;Abecasis, G;Aguet, F;Albert, C;Almasy, L;Alonso, A;Ament, S;Anderson, P;Anugu, P;Applebaum-Bowden, D;Ardlie, K;Dan, A;Ashley-Koch, A;Aslibekyan, S;Assimes, T;Auer, P;Avramopoulos, D;Ayas, N;Balasubramanian, A;Barnard, J;Barnes, K;Barr, RG;Barron-Casella, E;Barwick, L;Beaty, T;Beck, G;Becker, D;Becker, L;Beer, R;Beitelshees, A;Benjamin, E;Benos, T;Bezerra, M;Blackwell, T;Blue, N;Bowler, R;Broeckel, U;Broome, J;Brown, D;Bunting, K;Burchard, E;Bustamante, C;Buth, E;Cardwell, J;Carey, V, .;et al.
    Contributors: Institute of Population Health Sciences
    Abstract: Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.
    Date: 2022-12-23
    Relation: Nature Genetics. 2022 Dec 23;55:154-164.
    Link to: http://dx.doi.org/10.1038/s41588-022-01225-6
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1061-4036&DestApp=IC2JCR
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85144673676
    Appears in Collections:[鍾仁華] 期刊論文
    [熊昭] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85144673676.pdf5730KbAdobe PDF124View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback