國家衛生研究院 NHRI:Item 3990099045/15138
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 906810      在线人数 : 944
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15138


    题名: Evaluating the biological effectiveness of boron neutron capture therapy by using microfluidics-based pancreatic tumor spheroids
    作者: Yu, LY;Hsu, CH;Li, CY;Hong, SY;Chen, CR;Chen, CS
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Background: The recent success of boron neutron capture therapy (BNCT) for cancer treatment has attracted considerable attention. Because irradiated neutrons penetrate deep into solid tumor tissue, BNCT efficacy is strongly influenced by cell pathophysiology in tumors. The tumor microenvironment critically influences tumor pathophysiology, but its effects on BNCT remain unexplored. Methods: We used a pancreatic tumor as a model to develop a high-throughput 3D tumor spheroid platform for evaluating BNCT efficacy under different microenvironment conditions. We expanded our system to serve as a transwell-like device in order to investigate the influence of stromal fibroblasts in the tumor microenvironment. Results: With the use of the proposed microfluidic chip and a laboratory pipette, more than 40 spheroids with controllable diameters (standard deviation <10%) could be cultured on a chip for more than 10 days. The response to BNCT from each spheroid can be monitored in real time. By using pancreatic tumor spheroids of two different diameters, we found that large spheroids, characterized by more hypoxic microenvironments, exhibited lower BNCT susceptibility. The cells in the hypoxic region expressed the HIF1-α signal, which is crucial in many therapeutic resistance signal pathways. In addition, the heterogeneous presence of stemness markers (Oct-4, Sox-2, and CD 44) implied that the underlying BNCT resistance mechanism was sophisticated. In the presence of fibroblasts, we found an association between β-catenin nuclear translocation and BNCT resistance; membrane contacts from fibroblasts were found to be indispensable for translocation activation. Conclusions: In summary, by means of easily accessible microfluidic engineering, we developed tumor spheroids to recapture the pathophysiological characteristics of pancreatic tumors. Our data suggest that hypoxia and fibrosis can reduce BNCT efficacy in pancreatic cancer treatment. Considering the growing requirement for drug screening in personalized medicine, our findings and the developed method are expected to improve the fundamental understanding of BNCT and facilitate broad applications of BNCT in clinical settings.
    日期: 2023-06-05
    關聯: Analyst. 2023 Jun 05;148(13):3045-3056.
    Link to: http://dx.doi.org/10.1039/d2an01812h
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0003-2654&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001012993400001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161625528
    显示于类别:[許佳賢] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85161625528.pdf3033KbAdobe PDF115检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈