國家衛生研究院 NHRI:Item 3990099045/15144
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 911479      線上人數 : 910
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15144


    題名: Burden of cardiovascular disease attributable to long-term exposure to ambient PM2.5 concentration and the cost–benefit analysis for the optimal control level
    作者: Chen, CC;Wang, YR;Liu, JS;Chang, HY;Guo, YL;Chen, PC
    貢獻者: Institute of Population Health Sciences;National Institute of Environmental Health Sciences
    摘要: Environmental exposure to fine particulate matter PM2.5 is known to be associated with many hazardous health effects, including cardiovascular diseases (CVDs). To reduce the related health burden, it is crucial that policy-makers throughout the world set regulation levels according to their own evidence-based study outcomes. However, there appears to be a lack of decision-making methods for the control level of PM2.5 based on the burden of disease. In this study, 117,882 CVD-free participants (≥30-years-old) of the MJ Health Database were followed-up (for a median of 9 years) between 2007 and 2017. Each participant's residential address was matched to the 3× 3 km grid PM2.5 concentration estimates with a 5-year average for long-term exposure. We used a time-dependent nonlinear weight-transformation Cox regression model for the concentration–response function (CRF) between exposure to PM2.5 and CVD incidence. Town/district-specific PM2.5-attributable years of life in disability (YLDs) in CVD incidence were calculated by using the relative risk (RR) of the PM2.5 concentration level relative to the reference level. A cost–benefit analysis was proposed by assessing the trade-off between the gain in avoidable YLDs (given a reference level at u and considering mitigation cost) versus the loss in unavoidable YLDs by not setting at the lowest observed health effect level u0. The CRF varied across different areas with dissimilar PM2.5 exposure ranges. Areas with low PM2.5 concentrations and population sizes provided crucial information for the CVD health effect at the lower end. Additionally, women and older participants were more susceptible. The avoided town/district-specific YLDs in CVD incidence due to lower RRs ranged from 0 to 3000 person-years comparing the PM2.5 concentration levels in 2019 with the levels in 2011. Based on the cost–benefit analysis, an annual PM2.5 concentration of 13 μg/m3 would be optimal, which provides a guideline for the updated regulation level (currently at 15 μg/m3). The proposed cost–benefit analysis method may be applied to other countries/regions for regulation levels that are most suitable for their air pollution status and population health.
    日期: 2023-08-20
    關聯: Science of the Total Environment. 2023 Aug 20;892:Article number 164767.
    Link to: http://dx.doi.org/10.1016/j.scitotenv.2023.164767
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0048-9697&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001028979100001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85162145916
    顯示於類別:[張新儀] 期刊論文
    [陳主智] 期刊論文
    [陳保中] 期刊論文
    [郭育良] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85162145916.pdf3324KbAdobe PDF104檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋