國家衛生研究院 NHRI:Item 3990099045/15229
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 911770      線上人數 : 978
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15229


    題名: Design and verification of a wearable wireless 64-channel high-resolution EEG acquisition system with wi-fi transmission
    作者: Lin, CT;Wang, YH;Chen, SF;Huang, KC;Liao, LD
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Brain-computer interfaces (BCIs) allow communication between the brain and the external world. This type of technology has been extensively studied. However, BCI instruments with high signal quality are typically heavy and large. Thus, recording electroencephalography (EEG) signals is an inconvenient task. In recent years, system-on-chip (SoC) approaches have been integrated into BCI research, and sensors for wireless portable devices have been developed; however, there is still considerable work to be done. As neuroscience research has advanced, EEG signal analyses have come to require more accurate data. Due to the limited bandwidth of Bluetooth wireless transmission technology, EEG measurement systems with more than 16 channels must be used to reduce the sampling rate and prevent data loss. Therefore, the goal of this study was to develop a multichannel, high-resolution (24-bit), high-sampling-rate EEG BCI device that transmits signals via Wi-Fi. We believe that this system can be used in neuroscience research. The EEG acquisition system proposed in this work is based on a Cortex-M4 microcontroller with a Wi-Fi subsystem, providing a multichannel design and improved signal quality. This system is compatible with wet sensors, Ag/AgCl electrodes, and dry sensors. A LabVIEW-based user interface receives EEG data via Wi-Fi transmission and saves the raw data for offline analysis. In previous cognitive experiments, event tags have been communicated using Recommended Standard 232 (RS-232). The developed system was validated through event-related potential (ERP) and steady-state visually evoked potential (SSVEP) experiments. Our experimental results demonstrate that this system is suitable for recording EEG measurements and has potential in practical applications. The advantages of the developed system include its high sampling rate and high amplification. Additionally, in the future, Internet of Things (IoT) technology can be integrated into the system for remote real-time analysis or edge computing.
    日期: 2023-11
    關聯: Medical and Biological Engineering and Computing. 2023 Nov;61(11):3003-3019.
    Link to: http://dx.doi.org/10.1007/s11517-023-02879-y
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0140-0118&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001046395900001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85167515434
    顯示於類別:[廖倫德] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI001046395900001.pdf2653KbAdobe PDF100檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋