國家衛生研究院 NHRI:Item 3990099045/15383
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 906597      在线人数 : 957
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15383


    题名: Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases
    作者: Yuan, K;Longchamps, RJ;Pardiñas, AF;Yu, M;Chen, TT;Lin, SC;Chen, Y;Lam, M;Liu, R;Xia, Y;Guo, Z;Shi, W;Shen, C;Daly, MJ;Neale, BM;Feng, YA;Lin, YF;Chen, CY;O'Donovan, M;Ge, T;Huang, H
    贡献者: Center for Neuropsychiatric Research
    摘要: Genome-wide association studies (GWAS) of human complex traits or diseases often implicate genetic loci that span hundreds or thousands of genetic variants, many of which have similar statistical significance. While statistical fine-mapping in individuals of European ancestries has made important discoveries, cross-population fine-mapping has the potential to improve power and resolution by capitalizing on the genomic diversity across ancestries. Here we present SuSiEx, an accurate and computationally efficient method for cross-population fine-mapping, which builds on the single-population fine-mapping framework, Sum of Single Effects (SuSiE). SuSiEx integrates data from an arbitrary number of ancestries, explicitly models population-specific allele frequencies and LD patterns, accounts for multiple causal variants in a genomic region, and can be applied to GWAS summary statistics. We comprehensively evaluated SuSiEx using simulations, a range of quantitative traits measured in both UK Biobank and Taiwan Biobank, and schizophrenia GWAS across East Asian and European ancestries. In all evaluations, SuSiEx fine-mapped more association signals, produced smaller credible sets and higher posterior inclusion probability (PIP) for putative causal variants, and captured population-specific causal variants.
    日期: 2023-07-09
    關聯: medRxiv. 2023 Jul 9;Article in Press.
    Link to: http://dx.doi.org/10.1101/2023.01.07.23284293
    显示于类别:[林彥鋒] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB36711496.pdf1184KbAdobe PDF64检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈