English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12500/13673 (91%)
造訪人次 : 2596207      線上人數 : 321
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15516


    題名: Therapeutic effects of gnmt inducers for non-alcoholic fatty liver disease and hepatocellular carcinoma
    作者: Chen, Y
    貢獻者: National Institute of Infectious Diseases and Vaccinology
    摘要: Background: Glycine-N-methyl transferase (GNMT) downregulation results in nonalcoholic fatty liver disease (NAFLD) and spontaneous hepatocellular carcinoma (HCC) both. Overexpression of GNMT inhibits the accumulation of lipid in hepatocytes, the proliferation of liver cancer cell lines and prevents carcinogen-induced HCC, suggesting that GNMT induction is potential approaches for anti-NAFLD and anti-HCC therapy. Methods: Herein, we used Huh7 GNMT promoter-driven screening to identify two GNMT inducers from natural plant extracts library and small molecule library. First, 1,2,3,4,6-pentagalloyl glucose (PGG) was identified from the extract of Paeonia lactiflora Pall (PL). Second, compound K78 was identified and validated for its induction of GNMT and inhibition of Huh7 cell growth. Subsequently, we employed structure−activity relationship analysis and found a potent GNMT inducer, K117. The GNMT expression was further confirmed by reverse transcription-quantitative PCR (RT-qPCR) and Western blotting (WB) analysis using both in vitro and in vivo systems. Results: PGG and metformin were shown to upregulate liver mitochondrial GNMT protein expression. The high-fat diet (HFD)-induced NAFLD mice were treated with PGG and metformin. The combination of PGG and metformin nearly completely reversed weight gain, elevation of serum aminotransferases, and hepatic steatosis and steatohepatitis. In addition, the downregulated GNMT expression in liver tissues of HFD-induced NAFLD mice was restored. On the other hand, K117 inhibited Huh7 cell growth in vitro and xenograft in vivo. Oral administration can inhibit Huh7 xenograft in a manner equivalent to the effect of sorafenib. A mechanistic study revealed that both PGG and K117 are MYC inhibitors. Ectopic expression of MYC using CMV promoter blocked PGG- and K117-mediated MYC inhibition and GNMT induction. Conclusion: Our findings show that GNMT expression plays an important role in the pathogenesis of NAFLD and HCC, PGG and K117 are potential compounds for NAFLD-, HCC- and MYC-dependent cancers.
    日期: 2023-10
    關聯: Hepatology. 2023 Oct;78(Suppl. 1):S1903.
    Link to: http://dx.doi.org/10.1097/HEP.0000000000000580
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0270-9139&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001094865404407
    顯示於類別:[其他] 會議論文/會議摘要

    文件中的檔案:

    檔案 大小格式瀏覽次數
    ISI001094865404407.pdf155KbAdobe PDF80檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋