國家衛生研究院 NHRI:Item 3990099045/15534
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 909524      在线人数 : 778
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15534


    题名: Immunohistochemical stain-aided annotation accelerates machine learning and deep learning model development in the pathologic diagnosis of nasopharyngeal carcinoma
    作者: Lin, TP;Yang, CY;Liu, KJ;Huang, MY;Chen, YL
    贡献者: National Institute of Cancer Research
    摘要: Nasopharyngeal carcinoma (NPC) is an epithelial cancer originating in the nasopharynx epithelium. Nevertheless, annotating pathology slides remains a bottleneck in the development of AI-driven pathology models and applications. In the present study, we aim to demonstrate the feasibility of using immunohistochemistry (IHC) for annotation by non-pathologists and to develop an efficient model for distinguishing NPC without the time-consuming involvement of pathologists. For this study, we gathered NPC slides from 251 different patients, comprising hematoxylin and eosin (H&E) slides, pan-cytokeratin (Pan-CK) IHC slides, and Epstein-Barr virus-encoded small RNA (EBER) slides. The annotation of NPC regions in the H&E slides was carried out by a non-pathologist trainee who had access to corresponding Pan-CK IHC slides, both with and without EBER slides. The training process utilized ResNeXt, a deep neural network featuring a residual and inception architecture. In the validation set, NPC exhibited an AUC of 0.896, with a sensitivity of 0.919 and a specificity of 0.878. This study represents a significant breakthrough: the successful application of deep convolutional neural networks to identify NPC without the need for expert pathologist annotations. Our results underscore the potential of laboratory techniques to substantially reduce the workload of pathologists.
    日期: 2023-12-18
    關聯: Diagnostics. 2023 Dec 18;13(24):Article number 3685.
    Link to: http://dx.doi.org/10.3390/diagnostics13243685
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2075-4418&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001130615000001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85180716928
    显示于类别:[劉柯俊] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB38132269.pdf2897KbAdobe PDF80检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈