BACKGROUND: We aimed to identify important features of white matter microstructures collectively distinguishing individuals with attention-deficit/hyperactivity disorder (ADHD) from those without ADHD using a machine-learning approach. METHODS: Fifty-one ADHD patients and 60 typically developing controls (TDC) underwent diffusion spectrum imaging at two time points. We evaluated three models to classify ADHD and TDC using various machine-learning algorithms. Model 1 employed baseline white matter features of 45 white matter tracts at Time 1; Model 2 incorporated features from both time points; and Model 3 (main analysis) further included the relative rate of change per year of white matter tracts. RESULTS: The random forest algorithm demonstrated the best performance for classification. Model 1 achieved an area-under-the-curve (AUC) of 0.67. Model 3, incorporating Time 2 variables and relative rate of change per year, improved the performance (A = 0.73). In addition to identifying several white matter features at two time points, we found that the relative rate of change per year in the superior longitudinal fasciculus, frontal aslant tract, stria terminalis, inferior fronto-occipital fasciculus, thalamic and striatal tracts, and other tracts involving sensorimotor regions are important features of ADHD. A higher relative change rate in certain tracts was associated with greater improvement in visual attention, spatial short-term memory, and spatial working memory. CONCLUSIONS: Our findings support the significant diagnostic value of white matter microstructure and the developmental change rates of specific tracts, reflecting deviations from typical development trajectories, in identifying ADHD.
Date:
2024-07
Relation:
Asian Journal of Psychiatry. 2024 Jul;97:Article number 104087.