國家衛生研究院 NHRI:Item 3990099045/15996
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 852338      在线人数 : 1544
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/15996


    题名: Using large language model (LLM) to identify high-burden informal caregivers in long-term care
    作者: Chien, SC;Yen, CM;Chang, YH;Chen, YE;Liu, CC;Hsiao, YP;Yang, PY;Lin, HM;Yang, TE;Lu, XH;Wu, IC;Hsu, CC;Chiou, HY;Chung, RH
    贡献者: Institute of Population Health Sciences;National Center for Geriatrics and Welfare Research
    摘要: BACKGROUND: The rising global elderly population increases the demand for caregiving, yet traditional methods may not fully assess the challenges faced by vital informal caregivers. OBJECTIVE: To investigate the efficacy of Large Language Model (LLM) in detecting overburdened informal caregivers, benchmarking against rule-based and machine learning methods. METHODS: 1,791 eligible informal caregivers from Southern Taiwan and utilized their textual case summary reports for the LLM. We also employed structured questionnaire results for machine learning models. Furthermore, we leveraged the visualization of the LLM's attention mechanisms to enhance our understanding of the model's interpretative capabilities. RESULTS: The LLM achieved an Area Under the Receiver Operating Characteristic (AUROC) curve of 0.84 and an Area Under the Precision-Recall Curve (AUPRC) of 0.70, marking an 8% and 14% improvement over traditional methods. The visualization of the attention mechanism accurately reflected the evaluations of human experts, concentrating on descriptions of high-burden descriptions and the relationships between caregivers and recipients. CONCLUSION: This research demonstrates the notable capability of LLM to accurately identify high-burden caregivers in Long-term Care (LTC) settings. Compared to traditional approaches, LLM offers an opportunity for the future of LTC research and policymaking.
    日期: 2024-10
    關聯: Computer Methods and Programs in Biomedicine. 2024 Oct;255:Article number 108329.
    Link to: http://dx.doi.org/10.1016/j.cmpb.2024.108329
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0169-2607&DestApp=IC2JCR
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85198721629
    显示于类别:[鍾仁華] 期刊論文
    [邱弘毅] 期刊論文
    [許志成] 期刊論文
    [吳易謙] 期刊論文
    [嚴嘉明] 期刊論文
    [許志成] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB39029418.pdf3549KbAdobe PDF81检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈