English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12189/12972 (94%)
Visitors : 946613      Online Users : 536
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/16295


    Title: Phthalate exposure increases oxidative stress, early renal injury, and the risk of calcium urolithiasis: A case-control study
    Authors: Huang, ST;Hsieh, TJ;Lee, YC;Wu, CF;Tsai, YC;Chen, CC;Li, SS;Geng, JH;Hsu, YM;Chang, CW;Tsau, YH;Huang, SP;Juan, YS;Wu, WJ;Wu, MT;Liu, CC
    Contributors: Institute of Population Health Sciences
    Abstract: Background: Phthalates, ubiquitous in plastics and softening agents, are pervasive in our daily environment. Growing concerns have emerged regarding their potential impact on renal health, particularly due to their propensity to induce oxidative stress. However, the relationship between phthalate exposure and urolithiasis remains poorly understood. This research seeks to explore the connection between phthalate exposure, oxidative stress, and the risk of urolithiasis. Methods: A case-control study involving 285 patients diagnosed with calcium urolithiasis and 594 healthy controls was conducted. Participants completed structured questionnaires and provided urine samples for measuring 10 phthalate metabolites, biomarkers of oxidative stress (malondialdehyde [MDA]) and early renal injury (N-acetyl-beta-D-glucosaminidase [NAG] and albumin/creatinine ratio [ACR]). For subsequent analyses, we utilized distinct categories: the sum of high-molecular-weight phthalate metabolites (∑HMWm), the sum of low-molecular-weight phthalate metabolites (∑LMWm), and the daily intake of di-2-ethylhexyl phthalate (DEHP)(DI_DEHP_5). Results: Stone patients exhibited significantly elevated urinary biomarkers of oxidative stress (MDA) and early renal injury (NAG and ACR), along with higher levels of 9 out of 10 assessed phthalate metabolites compared to normal controls. Within the study population, significant positive associations were found between almost all individual phthalate metabolites and urinary biomarkers of oxidative stress (MDA) as well as early renal injury (NAG and ACR). Logistic regression further confirmed that elevated phthalate levels, including ∑HMWm, ∑LMWm, and DI_DEHP_5, were uniformly associated with an increased risk of oxidative stress, early renal injury, and urolithiasis after adjusting for confounding factors. Conclusions: Our study uncovers a novel association between phthalate exposure and the risk of urolithiasis, underscoring the heightened risk of kidney injury posed by such exposure. Considering the widespread presence of phthalates, regulatory measures and public health interventions are crucial to mitigate phthalate-related nephrotoxicity, while further large-scale longitudinal research is imperative to validate our initial findings and elucidate the underlying mechanisms.
    Date: 2024-11-15
    Relation: Ecotoxicology and Environmental Safety. 2024 Nov 15;287:Article number 117322.
    Link to: http://dx.doi.org/10.1016/j.ecoenv.2024.117322
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0147-6513&DestApp=IC2JCR
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85208758356
    Appears in Collections:[陳主智] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85208758356.pdf1582KbAdobe PDF3View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback