國家衛生研究院 NHRI:Item 3990099045/16953
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12500/13673 (91%)
造访人次 : 2597609      在线人数 : 398
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/16953


    题名: Modelling COVID-19 epidemic curve in Taipei City, Taiwan by a citywide wastewater SARS-CoV-2 surveillance
    作者: Chen, CY;Chang, YH;Chen, CHS;Chang, SY;Chan, CC;Chen, PC;Su, TC
    贡献者: National Institute of Environmental Health Sciences
    摘要: Over 70 countries have adopted wastewater surveillance during the COVID-19 pandemic as a novel tool to detect unidentified cases and monitor epidemic curves. However, epidemic prediction models are highly site-specific, necessitating tailored approaches. This study aimed to establish a citywide wastewater surveillance system and develop an epidemic prediction model for Taipei City, Taiwan. From May to August 2022, wastewater samples were collected daily from the Xinyi and Neihu districts and twice weekly from the remaining 10 districts. SARS-CoV-2 genetic material was quantified using RT-qPCR, and a “relative signal” was calculated as the ratio of SARS-CoV-2 viral concentration to the concentration of the human RNase P gene to normalize variability in sample collection. Regression analysis based on data from the two districts was conducted to forecast new COVID-19 cases. On average, wastewater samples contained 1,829.0 ± 2,237.7 viral copies per liter, with relative signals averaging 17.1 ± 16.7. The best-fitting model, adjusted for temperature, indicated that a 1 % increase in viral signals corresponded to an approximately 0.27 % rise in the future 5-day moving average of new cases. With an R-squared value of 0.78, the model demonstrated robust explanatory power. The model, validated via a paired sample t-test, reliably estimated epidemic trends with no significant difference between predicted and reported cases in the other 10 districts. These findings suggest that wastewater viral surveillance can be an effective supplementary tool for epidemic forecasting in urban settings like Taipei, where high sewer connectivity is in place.
    日期: 2025-05
    關聯: Journal of Hazardous Materials Advances. 2025 May;18:Article number 100635.
    Link to: http://dx.doi.org/10.1016/j.hazadv.2025.100635
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2772-4166&DestApp=IC2JCR
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85217950383
    显示于类别:[陳保中] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85217950383.pdf4063KbAdobe PDF31检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈