English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12500/13673 (91%)
造訪人次 : 2559606      線上人數 : 236
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/16954


    題名: 5-methoxytryptophan protects against toll-like receptor 2-mediated renal tissue inflammation and fibrosis in a murine unilateral ureteral obstruction model
    作者: Wu, JY;Lee, GL;Chueh, YF;Kuo, CC;Hsu, YJ;Wu, KK
    貢獻者: Institute of Cellular and Systems Medicine
    摘要: INTRODUCTION: 5-Methoxytryptophan (5-MTP) is a cellular metabolite with anti-inflammatory properties. Several recent reports indicate that 5-MTP protects against post-injury tissue fibrosis. It was unclear how 5-MTP controls tissue fibrosis. We postulated that 5-MTP attenuates renal interstitial fibrosis by blocking toll-like receptor 2 (TLR2) and transforming growth factor β (TGFβ) signaling pathways. METHODS: In vivo experiments were carried out in a well-established unilateral ureteral obstruction (UUO) model in wild-type (WT) and tlr2-/- mice. The effect of 5-MTP on renal fibrosis was evaluated by pretreatment of WT UUO mice with intraperitoneal administration of 5-MTP. To determine whether 5-MTP attenuates fibrosis by inhibiting TLR2 and TGFβ signaling pathways, we evaluated the effect of 5-MTP on TLR2-induced fibroblast phenotypic switch in NRK-49F fibroblasts and TLR2 and TGFβ signaling pathways in human proximal tubular epithelial cells (HPTECs) and RAW264.7 macrophages stimulated with Pam3CSK4 (Pam3) or TGFβ1. RESULTS: UUO-induced renal fibrosis was abrogated in tlr2-/- mice consistent with a crucial role of TLR2 in UUO-induced renal fibrosis. UUO-induced macrophage infiltration and pro-fibrotic cytokine production in renal tissues were suppressed by tlr2 knockout. 5-MTP administration attenuated renal tissue fibrosis accompanied by reduction of macrophage infiltration and IL-6 and TGFβ levels. 5-MTP inhibits TLR2 upregulation and blocks TLR2-MyD88-TRAF6 signaling pathway in macrophages. Furthermore, 5-MTP blocked Pam3- and TGFβ1-induced phenotypic switch of NRK-49F to myofibroblasts and inhibited Pam3- and TGFβ1-induced signaling pathways in HPTECs and RAW264.7 cells. CONCLUSION: 5-MTP is effective in protecting against UUO-induced renal interstitial fibrosis by blocking TLR2 and TGFβ signaling pathways. INTRODUCTION: 5-Methoxytryptophan (5-MTP) is a cellular metabolite with anti-inflammatory properties. Several recent reports indicate that 5-MTP protects against post-injury tissue fibrosis. It was unclear how 5-MTP controls tissue fibrosis. We postulated that 5-MTP attenuates renal interstitial fibrosis by blocking toll-like receptor 2 (TLR2) and transforming growth factor β (TGFβ) signaling pathways. METHODS: In vivo experiments were carried out in a well-established unilateral ureteral obstruction (UUO) model in wild-type (WT) and tlr2-/- mice. The effect of 5-MTP on renal fibrosis was evaluated by pretreatment of WT UUO mice with intraperitoneal administration of 5-MTP. To determine whether 5-MTP attenuates fibrosis by inhibiting TLR2 and TGFβ signaling pathways, we evaluated the effect of 5-MTP on TLR2-induced fibroblast phenotypic switch in NRK-49F fibroblasts and TLR2 and TGFβ signaling pathways in human proximal tubular epithelial cells (HPTECs) and RAW264.7 macrophages stimulated with Pam3CSK4 (Pam3) or TGFβ1. RESULTS: UUO-induced renal fibrosis was abrogated in tlr2-/- mice consistent with a crucial role of TLR2 in UUO-induced renal fibrosis. UUO-induced macrophage infiltration and pro-fibrotic cytokine production in renal tissues were suppressed by tlr2 knockout. 5-MTP administration attenuated renal tissue fibrosis accompanied by reduction of macrophage infiltration and IL-6 and TGFβ levels. 5-MTP inhibits TLR2 upregulation and blocks TLR2-MyD88-TRAF6 signaling pathway in macrophages. Furthermore, 5-MTP blocked Pam3- and TGFβ1-induced phenotypic switch of NRK-49F to myofibroblasts and inhibited Pam3- and TGFβ1-induced signaling pathways in HPTECs and RAW264.7 cells. CONCLUSION: 5-MTP is effective in protecting against UUO-induced renal interstitial fibrosis by blocking TLR2 and TGFβ signaling pathways.
    日期: 2025-01-07
    關聯: Journal of Innate Immunity. 2025 Jan 07;17(1):78-94.
    Link to: http://dx.doi.org/10.1159/000543275
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1662-8128&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:001450596000001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85218353168
    顯示於類別:[伍焜玉] 期刊論文
    [郭呈欽] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85218353168.pdf2431KbAdobe PDF18檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋