This paper describes our studies on non-parametric maximum-likelihood estimators in a semiparametric mixture model for competing-risks data, in which proportional hazards models are specified for failure time models conditional on cause and a multinomial model is specified for the marginal distribution of cause conditional on covariates. We provide a verifiable identifiability condition and, based on it, establish an asymptotic profile likelihood theory for this model. We also provide efficient algorithms for the computation of the non-parametric maximum-likelihood estimate and its asymptotic variance. The success of this method is demonstrated in simulation studies and in the analysis of Taiwan severe acute respiratory syndrome data.