國家衛生研究院 NHRI:Item 3990099045/2177
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 855608      Online Users : 1255
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/2177


    Title: Essential role of the 58-kDa microspherule protein in the modulation of Daxx-dependent transcriptional repression as revealed by nucleolar sequestration
    Authors: Lin, DY;Shih, HM
    Contributors: Division of Molecular and Genomic Medicine
    Abstract: Daxx has been reported to mediate the Fas/JNK-dependent signals in the cytoplasm. However, several lines of evidence have suggested that Daxx is located mainly in the nucleus and functions as a transcriptional regulator. Recent studies have further indicated that Daxx-elicited transcriptional repression can be inhibited by the nuclear body-associated promyelocytic leukemia protein and apoptosis signal-regulating kinase 1 by sequestering Daxx to the nuclear bodies and the cytoplasm, respectively. Here, we further investigated the coordinated molecular mechanism by which Daxx function is regulated through protein-protein interaction. Using yeast two-hybrid screens to identify Daxx-interacting protein(s), three independent clones encoding the 58-kDa microspherule protein (MSP58) fragments were identified. Furthermore, we have demonstrated that Daxx interacts in vitro and in vivo with MSP58 via its NH2-terminal segment, which is distinct from the binding region of Fas, apoptosis signal-regulating kinase 1, and promyelocytic leukemia protein, suggesting a unique modulatory role of MSP58 on Daxx function. Transient transfection experiments revealed that MSP58 relieves the repressor activity of Daxx in a dose-dependent manner in COS-1 and 293 cells but not in HeLa cells, implicating cell type-specific modulation of Daxx function by MSP58. Moreover, immunofluorescence analysis unequivocally demonstrated that MSP58 overexpression results in a translocation of Daxx to the enlarged nucleoli in COS-1 or 293 cells, whereas Daxx exhibited a diffuse nuclear pattern in HeLa cells. Taken together, these findings delineate a network of regulatory signaling pathways that converges on MSP58/Daxx interaction, causally associating Daxx nucleolus targeting with its transcriptional activation function.
    Keywords: Biochemistry & Molecular Biology
    Date: 2002-07-12
    Relation: Journal of Biological Chemistry. 2002 Jul;277(28):25446-25456.
    Link to: http://dx.doi.org/10.1074/jbc.M200633200
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1083-351X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000176747000079
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0037067668
    Appears in Collections:[Hsiu-Ming Shih] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    000176747000079.pdf684KbAdobe PDF1040View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback