One possible path towards understanding the biological function of a target protein is through the discovery of how it interfaces within protein-protein interaction networks. The goal of this study was to create a virtual protein-protein interaction model using the concepts of orthologous conservation (or interologs) to elucidate the interacting networks of a particular target protein. POINT (the (p) under bar rediction (o) under barf (int) under bar eractome database) is a functional database for the prediction of the human protein-protein interactome based on available orthologous interactome datasets. POINT integrates several publicly accessible databases, with emphasis placed on the extraction of a large quantity of mouse, fruit fly, worm and yeast protein-protein interactions datasets from the Database of Interacting Proteins (DIP), followed by conversion of them into a predicted human interactome. In addition, protein-protein interactions require both temporal synchronicity and precise spatial proximity. POINT therefore also incorporates correlated mRNA expression clusters obtained from cell cycle microarray databases and subcellular localization from Gene Ontology to further pinpoint the likelihood of biological relevance of each predicted interacting sets of protein partners.