Arsenic is a notorious environmental toxicant and was found to cause oxidative stress in cultured cells and animals. However, little work has been done in human studies, especially for the population occupationally exposed to arsenic. In order to investigate the effect of occupational exposure to arsenic in oxidative stress, we measured urinary 8-oxo-7,8-diliydro-2'-deoxygLianosine (8-oxodGuo) from 90 semiconductor workers including 50 exposed and 40 nonexposed subjects. A highly sensitive and specific isotope dilution LC-MS/MS method was used for quantification of 8-oxodGuo. The levels of inorganic arsenic (iAs(3+) iAs(5+)), monomethylarsonic acid (NIMA), and dimethylarsinic acid (DMA) in urine were determined by high-performance liquid chromatography-flow injection atomic absorption spectrometry (HPLC-FIAAS). Results showed that the mean urinary concentrations of total arsenic and 8-oxodGuo were significantly higher for exposed workers compared with the nonexposed workers. In addition, elevated urinary 8-oxodGuo concentrations of exposed workers were correlated with urinary levels of MMA (r = 0.44, P < 0.005) and the extent of primary methylation (the ratio of MMA to inorganic arsenic) (r = 0.40, P < 0.005). These findings suggested that occupational exposure to arsenic could result in the induction of oxidative stress. The presence and/or formation of MMA could play an important role in arsenic-involved injuries.