We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-alpha)-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-alpha induces various biological effects on vascular cells, TNF-alpha dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-alpha concentrations, we adopted the lower TNF-alpha (0.2 ng/ml) to rule out the possible involvement of other TNF-alpha-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-alpha-induced adhesion molecule expression and monocyte-endothelial monolayer binding. BSO attenuated the TNF-alpha-induced nuclear factor-kappaB (NF-kappa B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-alpha, Inhibition of ERK, JNK, or NF-kappa B attenuates TNF-alpha-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-alpha induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-kappa B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-alpha. Although AP-1 activation by the lower TNF-alpha was not detected in our systems, we could not rule out the possible involvernent of transiently activated MAPKs/AP-1 in the regulation of TNF-alpha-induced adhesion molecule expression.