The use of biodiesel fuel as a substitute for fossil fuel in diesel engines has received increasing attention in recent years.. This study is the first to investigate and compare the characteristics of mutagenic species, trans, trans-2,4-decadienal (tt-DDE), and polycyclic aromatic hydrocarbons (PAHs) in the diluted exhaust of diesel engines operated with diesel and biodiesel blend fuels. An engine of current design was operated on a dynamometer consistent with the US federal test procedure transient-cycle specifications. Petroleum diesel and a blend of petroleum diesel and biodiesel (B20) were tested. Exhaust sampling was carried out on diluted exhaust in a dilution tunnel with a constant-volume sampling system. Concentrations of tt-DDE and PAHs were analyzed by GC/MS. Although average PAH emission factors decreased from 1403 to 1051 mu g bhp-h(-1), the results show that tt-DDE is evidently generated (1.28 mu g bhp-h(-1)) in the exhaust of diesel engine using B20 as fuel. This finding suggests that tt-DDE emission from the use of biodiesel should be taken into account in characterization and health-risk assessment. The results also show that tt-DDE is depleted in the diesel engine combustion process and the existence of tt-DDE in biodiesel is the major source of tt-DDE emission. The distribution of tt-DDE in the particulate phase is 55.3% under this study's sampling conditions. For diesel and B20, PAH phase distributions have similar trends. Lower molecular weight PAHs predominate in gaseous phase for both diesel and B20. Cold-start driving has higher tt-DDE and PAH emission factors, as well as a higher percentage of tt-DDE in particulate phase, than for warm-start driving. (C) 2007 Elsevier Ltd. All rights reserved.