國家衛生研究院 NHRI:Item 3990099045/2803
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 914883      Online Users : 1419
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/2803


    Title: Salvinal, a novel microtubule inhibitor isolated from Salvia miltiorrhizae Bunge (Danshen), with antimitotic activity in multidrug-sensitive and -resistant human tumor cells
    Authors: Chang, JY;Chang, CY;Kuo, CC;Chen, LT;Wein, YS;Kuo, YH
    Contributors: National Institute of Cancer Research
    Abstract: Aqueous extracts of Salvia miltiorrhizae Bunge have been extensively used in the treatment of cardiovascular disorders and cancer in Asia. Recently, a compound, 5-(3-hydroxypropyl)-7-methoxy-2-(3'-methoxy-4'-hydroxyphenyl)-3-benzo[b]furancarbaldehyde (salvinal), isolated from this plant showed inhibitory activity against tumor cell growth and induced apoptosis in human cancer cells. In the present study, we investigated the cytotoxic effect and mechanisms of action of salvinal in human cancer cell lines. Salvinal caused inhibition of cell growth (IC50 range, 4-17 muM) in a variety of human cancer cell lines. Flow cytometry analysis showed that salvinal treatment resulted in a concentration-dependent accumulation of cells in the G(2)/M phase. We observed, using Hoechst 33258 dye staining, that salvinal blocked the cell cycle in mitosis. In vitro and in vivo examinations showed that salvinal inhibited tubulin polymerization in a concentration-dependent manner. Immunocytochemical studies demonstrated that salvinal treatment caused the changes of cellular microtubule network, similar to the effect of colchicine. In addition, salvinal treatment resulted in upregulation of cyclin B1 levels, activation of Cdc2 kinase, and Cdc25c phosphorylation. Furthermore, elevation of levels of MPM-2 phosphoepitopes in salvinal-treated cells in a concentration-dependent manner was also observed. Similar to the effect of other antitubulin agent, hyperphosphorylation of Bcl-2, induction of DNA fragmentation and activation of caspase-3 activity occurred in salvinal-treated cells. In particular, salvinal exhibited similar inhibitory activity against parental KB, P-glycoprotein-overexpressing KB vin10 and KB taxol-50 cells, and multidrug resistance-associated protein (MRP)-expressing etoposide-resistant KB 7D cells. Taken together, our data demonstrate that salvinal inhibits tubulin polymerization, arrests cell cycle at mitosis, and induces apoptosis. Notably, Salvinal is a poor substrate for transport by P-glycoprotein and MRP. Salvinal may be useful in the treatment of human cancers, particularly in patients with drug resistance.
    Keywords: Pharmacology & Pharmacy
    Date: 2004-01-01
    Relation: Molecular Pharmacology. 2004 Jan;65(1):77-84.
    Link to: http://dx.doi.org/10.1124/mol.65.1.77
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0026-895X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000188010000011
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=1642495631
    Appears in Collections:[Li-Tzong Chen] Periodical Articles
    [Jang-Yang Chang] Periodical Articles
    [Ching-Chuan Kuo] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    000188010000011.pdf330KbAdobe PDF451View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback