English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 911922      Online Users : 1048
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/3542


    Title: Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation
    Authors: Liu, HL;Hsieh, CM
    Contributors: Division of Medical Engineering Research
    Abstract: Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound. 穢 2008 Elsevier B.V. All rights reserved.
    Date: 2009-03
    Relation: Ultrasonics Sonochemistry. 2009 Mar;16(3):431-438.
    Link to: http://dx.doi.org/10.1016/j.ultsonch.2008.08.009
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1350-4177&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000262781700025
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=58049167275
    Appears in Collections:[其他] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP58049167275.pdf937KbAdobe PDF1145View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback