English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 855429      Online Users : 1104
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/4072


    Title: Rho kinases regulate the renewal and neural differentiation of embryonic stem cells in a cell plating density-dependent manner
    Authors: Chang, TC;Chen, YC;Yang, MH;Chen, CH;Hsing, EW;Ko, BS;Liou, JY;Wu, KK
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: BACKGROUND: Rho kinases (ROCKs) mediate cell contraction, local adhesion, and cell motility, which are considered to be important in cell differentiation. We postulated that ROCKs are involved in controlling embryonic stem (ES) cell renewal and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: CCE, a murine ES cell, was treated with Y-27632 for 48 to 96 hours and colony formation was evaluated. Y-27632 blocked CCE colony formation and induced CCE to grow as individual cells, regardless of the initial seeding cell density either at 10(4)/cm(2) ("high" seeding density) or 2x10(3)/cm(2) ("low" density). However, at high seeding density, Y-27632-treated cells exhibited reduction of alkaline phosphatase (AP) staining and Oct3/4 expression. They expressed SOX-1, nestin, and MAP2c, but not betaIII-tubulin or NG-2. They did not express endoderm or mesoderm lineage markers. After removal of Y-27632, the cells failed to form colonies or regain undifferentiated state. Silencing of ROCK-1 or ROCK-2 with selective small interference RNA induced CCE morphological changes similar to Y-27632. Silencing of ROCK-1 or ROCK-2 individually was sufficient to cause reduction of AP and Oct3/4, and expression of SOX-1, nestin, and MAP2c; and combined silencing of both ROCKs did not augment the effects exerted by individual ROCK siRNA. Y-27632-treated CCE cells seeded at 2x10(3) or 6.6x10(3) cells/cm(2) did not lose renewal factors or express differentiation markers. Furthermore, they were able to form AP-positive colonies after removal of Y-27632 and reseeding. Similar to ROCK inhibition by Y-27632, silencing of ROCK-1 or ROCK-2 in cells seeded at 2x10(3)/cm(2) did not change renewal factors. CONCLUSIONS/SIGNIFICANCE: We conclude that ROCKs promote ES cell colony formation, maintain them at undifferentiated state, and prevent them from neural differentiation at high seeding density. ROCK inhibition represents a new strategy for preparing large numbers of neural progenitor cells.
    Date: 2010-02-12
    Relation: PLoS ONE. 2010 Feb 12;5(2):Article number e9187.
    Link to: http://dx.doi.org/10.1371/journal.pone.0009187
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1932-6203&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000274474600008
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=77949437184
    Appears in Collections:[伍焜玉] 期刊論文
    [劉俊揚] 期刊論文

    Files in This Item:

    File Description SizeFormat
    PUB20169147.pdf1267KbAdobe PDF792View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback