國家衛生研究院 NHRI:Item 3990099045/5296
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 859774      線上人數 : 827
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/5296


    題名: A robust diagnostic plot for explanatory variables under model mis-specification
    作者: Chien, LC
    貢獻者: Division of Biostatistics and Bioinformatics
    摘要: A typical added variable plot is a commonly used plot in assessing the accuracy of a normal linear model. This plot is often used to evaluate the effect of adding an explanatory variable into the model and to detect possibly high leverage points or influential observations on the added variable. However, this type of plot is generally in doubt, once the normal distributional assumptions are violated. In this article, we extend the robust likelihood technique introduced by Royall and Tsou [11] to propose a robust added variable plot. The validity of this diagnostic plot requires no knowledge of the true underlying distributions so long as their second moments exist. The usefulness of the robust graphical approach is demonstrated through a few illustrations and simulations.
    日期: 2011-01
    關聯: Journal of Applied Statistics. 2011 Jan;38(1):113-126.
    Link to: http://dx.doi.org/10.1080/02664760903271940
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0266-4763&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000285148900009
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78650067616
    顯示於類別:[其他] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP78650067616.pdf456KbAdobe PDF549檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋