English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 853203      Online Users : 713
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/5618


    Title: Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation-A mammalian cell-based mutagenesis approach
    Authors: Chiang, HC;Wang, CY;Lee, HL;Tsou, TC
    Contributors: Division of Environmental Health and Occupational Medicine
    Abstract: Both cytochrome P450 2A6 (CYP2A6) and cytochrome P450 2A13 (CYP2A13) are involved in metabolic activation of tobacco-specific nitrosamines and may play important roles in cigarette smoking-induced lung cancer. Unlike CYP2A6, effects of CYP2A13 on the tobacco-specific nitrosamine-induced mutagenesis in lung cells remain unclear. This study uses a supF mutagenesis assay to examine the relative effects of CYP2A6 and CYP2A13 on metabolic activation of a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and its resulting mutagenesis in human lung cells. A recombinant adenovirus-mediated CYP2A6/CYP2A13 expression system was established to specifically address the relative effects of these two CYPs. Mutagenesis results revealed that both CYP2A6 and CYP2A13 significantly enhanced the NNK-induced supF mutation and that the mutagenic effect of CYP2A13 was markedly higher than that of CYP2A6. Analysis of NNK metabolism indicated that >/=70% of NNK was detoxified to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), either with or without CYP2A6/CYP2A13 expression. Both CYP2A6 and CYP2A13 significantly enhanced the alpha-hydroxylation of NNK; and the alpha-hydroxylation activity of CYP2A13 was significantly higher than that of CYP2A6. Analysis of the NNK-related DNA adduct formation indicated that, in the presence of CYP2A13, NNK treatments caused marked increases in O(6)-methylguanine (O(6)-MeG). The present results provide the first direct in vitro evidence demonstrating the predominant roles of CYP2A13 in NNK-induced mutagenesis, possibly via metabolic activation of NNK alpha-hydroxylation.
    Date: 2011-06-01
    Relation: Toxicology and Applied Pharmacology. 2011 Jun 1;253(2):145-152.
    Link to: http://dx.doi.org/10.1016/j.taap.2011.03.022
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0041-008X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000290822500008
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79955585396
    Appears in Collections:[鄒粹軍] 期刊論文

    Files in This Item:

    File Description SizeFormat
    PUB21473878.pdf835KbAdobe PDF744View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback