Cigarette smoking and exposure to environmental tobacco smoke (ETS) are important risk factors for many cancers. However, exposure doses have usually not been quantitatively assessed in human studies. In humans 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronate conjugate (defined as total NNAL) are the major metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a cigarette-specific carcinogen. Although animal studies have shown that exposure to cigarette smoke increases tissue oxidative DNA damage, the relationship between cigarette smoke and 8-hydroxydeoxyguanosine (8-OHdG) is not consistent in human studies. In the present study, we have developed a simple, sensitive, and robust LC-MS/MS method for quantifying total NNAL and 8-OHdG concentrations in human plasma. We quantified total NNAL and 8-OHdG in plasma as well as 8-OHdG in urine of 121 healthy male subjects. Total NNAL levels were significantly higher in ever-smokers than in never-smokers. Furthermore, total NNAL levels in plasma were increased with numbers of cigarettes smoked per day in ever-smokers. It suggests that total NNAL in plasma is a good biomarker for cigarette smoke exposure. After stratifying by smoking status and adjusting for age, ETS exposure and occupation category, total NNAL was associated with plasma and urinary 8-OHdG in never-smokers, but not in ever-smokers. Since total NNAL levels in nonsmokers represented the ETS exposure, it appears that 8-OHdG levels are dose-dependently correlated with their ETS exposure dose. Furthermore, this correlation supports the hypothesis that oxidative DNA damage is one of major adverse effects induced by ETS exposure in humans.
Date:
2012-01
Relation:
Science of the Total Environment. 2012 Jan;414:134-139.