English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 905179      Online Users : 915
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/6277


    Title: Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow
    Authors: Lee, DY;Lee, CI;Lin, TE;Lim, SH;Zhou, J;Tseng, YC;Chien, S;Chiu, JJ
    Contributors: Division of Medical Engineering Research
    Abstract: Vascular endothelial cells (ECs) are exposed to different flow patterns (i.e., disturbed vs. laminar), and the associated oscillatory shear stress (OSS) or pulsatile shear stress (PSS) lead to differential responses. We investigated the roles of class I and II histone deacetylases (HDAC-1/2/3 and HDAC-5/7, respectively) in regulating NF-E2–related factor-2 (Nrf2) and Krüppel-like factor-2 (KLF2), two transcription factors governing many shear-responsive genes, and the cell cycle in ECs in response to OSS. Application of OSS (0.5 ± 4 dynes/cm2) to cultured ECs sustainably up-regulated class I and II HDACs and their nuclear accumulation, whereas PSS (12 ± 4 dynes/cm2) induced phosphorylation-dependent nuclear export of class II HDACs. En face immunohistochemical examination of rat aortic arch and experimentally stenosed abdominal aorta revealed high HDAC-2/3/5 levels in ECs in areas exposed to disturbed flow. OSS induced the association of HDAC-1/2/3 with Nrf2 and HDAC-3/5/7 with myocyte enhancer factor-2; deacetylation of these factors led to down-regulation of antioxidant gene NAD(P)H quinone oxidoreductase-1 (NQO1) and KLF2. HDAC-1/2/3– and HDAC-3/5/7–specific small interfering RNAs eliminated the OSS-induced down-regulation of NQO1 and KLF2, respectively. OSS up-regulated cyclin A and down-regulated p21CIP1 in ECs and induced their proliferation; these effects were mediated by HDAC-1/2/3. Intraperitoneal administration of the class I-specific HDAC inhibitor valproic acid into bromodeoxyuridine (BrdU)-infused rats inhibited the increased EC uptake of BrdU at poststenotic sites. The OSS-induced HDAC signaling and EC responses are mediated by phosphatidylinositol 3-kinase/Akt. Our findings demonstrate the important roles of different groups of HDACs in regulating the oxidative, inflammatory, and proliferative responses of ECs to disturbed flow with OSS.
    Date: 2012-02
    Relation: Proceedings of the National Academy of Sciences of the United States of America. 2012 Feb;109(6):1967-1972.
    Link to: http://dx.doi.org/10.1073/pnas.1121214109
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0027-8424&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000299925000039
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84863135417
    Appears in Collections:[裘正健] 期刊論文

    Files in This Item:

    File Description SizeFormat
    ISI000299925000039.pdf847KbAdobe PDF676View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback