English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 858748      Online Users : 755
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/6451


    Title: Interleukin-33 induces interleukin-17F in bronchial epithelial cells
    Authors: Fujita, J;Kawaguchi, M;Kokubu, F;Ohara, G;Ota, K;Huang, SK;Morishima, Y;Ishii, Y;Satoh, H;Sakamoto, T;Hizawa, N
    Contributors: Division of Environmental Health and Occupational Medicine
    Abstract: Background IL-33 is clearly expressed in the airway of patients with asthma, but its role in asthma has not yet been fully understood. IL-17F is also involved in the pathogenesis of asthma. However, the regulatory mechanisms of IL-17F expression remain to be defined. To further indentify the role of IL-33 in asthma, we investigated the expression of IL-17F by IL-33 in bronchial epithelial cells and its signaling mechanisms. Methods Bronchial epithelial cells were stimulated with IL-33. The levels of IL-17F expression were analyzed using real-time PCR and ELISA. Next, the involvement of ST2, MAP kinases, and mitogen- and stress-activated protein kinase1 (MSK1) was determined by Western blot analyses. Various kinase inhibitors and anti-ST2 neutralizing Abs were added to the culture to identify the key signaling events leading to the expression of IL-17F, in conjunction with the use of short interfering RNAs (siRNAs) targeting MSK1. Results IL-33 significantly induced IL-17F gene and protein expression. The receptor for IL-33, ST2, was expressed in bronchial epithelial cells. Among MAP kinases, IL-33 phosphorylated ERK1/2, but not p38MAPK and JNK. It was inhibited by the pretreatment of anti-ST2 neutralizing (blocking) Abs. MEK inhibitor significantly blocked IL-17F production. Moreover, IL-33 phosphorylated MSK1, and MEK inhibitor diminished its phosphorylation. Finally, MSK1 inhibitors and transfection of the siRNAs targeting MSK1 significantly blocked the IL-17F expression. Conclusions IL-33 induces IL-17F via ST2-ERK1/2-MSK1 signaling pathway in bronchial epithelial cells. These data suggest that the IL-33/IL-17F axis is involved in allergic airway inflammation and may be a novel therapeutic target.
    Date: 2012-06
    Relation: Allergy. 2012 Jun;67(6):744-750.
    Link to: http://dx.doi.org/10.1111/j.1398-9995.2012.02825.x
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0105-4538&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000303854900006
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84861101313
    Appears in Collections:[黃嘯谷] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP84861101313.pdf400KbAdobe PDF458View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback