OBJECTIVE: Migration of vascular smooth muscle cells (VSMCs) from the media into intima contributes to the development of atherosclerosis. Gene deletion experiments implicate a role for toll-like receptor 2 (TLR2) in atherogenesis. However, the underlying mechanisms remain unclear. We postulate that TLR2 promotes VSMC migration by enhancing interleukin (IL)-6 production. METHODS AND RESULTS: Migration assays revealed that TLR2 agonists promoted VSMC migration but not cell proliferation or viability. TLR2 deficiency or inhibition of TLR2 signaling with anti-TLR2 antibody suppressed TLR2 agonist-induced VSMC migration and IL-6 production, which was mediated via p38 mitogen-associated protein kinase and extracellular signal-regulated kinase 1/2 signaling pathways. Neutralizing anti-IL-6 antibodies impaired TLR2-mediated VSMC migration and formation of filamentous actin fiber and lamellipodia. Blockade of p38 mitogen-associated protein kinase or extracellular signal-regulated kinase 1/2 activation inhibited TLR2 agonist pam3CSK4-induced phosphorylation of cAMP response element-binding protein, which regulates IL-6 promoter activity through the cAMP response element site. Moreover, cAMP response element-binding protein small interfering RNA inhibited pam3CSK4-induced IL-6 production and VSMC migration. Additionally, Rac1 small interfering RNA inhibited pam3CSK4-induced VSMC migration but not IL-6 production. CONCLUSIONS: Our results suggest that on ligand binding, TLR2 activates p38 mitogen-associated protein kinase and extracellular signal-regulated kinase 1/2 signaling in VSMCs. These signaling pathways act in concert to activate cAMP response element-binding protein and subsequent IL-6 production, which in turn promotes VSMC migration via Rac1-mediated actin cytoskeletal reorganization.
Date:
2012-11
Relation:
Arteriosclerosis, Thrombosis, and Vascular Biology. 2012 Nov;32(11):2751-2760.