|
English
|
正體中文
|
简体中文
|
Items with full text/Total items : 12145/12927 (94%)
Visitors : 908541
Online Users : 995
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
http://ir.nhri.org.tw/handle/3990099045/7098
|
Title: | Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase |
Authors: | Wu, CA;Chao, Y;Shiah, SG;Lin, WW |
Contributors: | National Institute of Cancer Research |
Abstract: | The Warburg effect is known to be crucial for cancer cells to acquire energy. Nutrient deficiencies are an important phenomenon in solid tumors, but the effect on cancer cell metabolism is not yet clear. In this study, we demonstrate that starvation of HeLa cells by incubation with Hank's buffered salt solution (HBSS) induced cell apoptosis, which was accompanied by the induction of reactive oxygen species (ROS) production and AMP-activated protein kinase (AMPK) phosphorylation. Notably, HBSS starvation increased lactate production, cytoplasmic pyruvate content and decreased oxygen consumption, but failed to change the lactate dehydrogenase (LDH) activity or the glucose uptake. We found that HBSS starvation rapidly induced pyruvate dehydrogenase kinase (PDK) activation and pyruvate dehydrogenase (PDH) phosphorylation, both of which were inhibited by compound C (an AMPK inhibitor), NAC (a ROS scavenger), and the dominant negative mutant of AMPK. Our data further revealed the involvement of ROS production in AMPK activation. Moreover, DCA (a PDK inhibitor), NAC, and compound C all significantly decreased HBSS starvation-induced lactate production accompanied by enhancement of HBSS starvation-induced cell apoptosis. Not only in HeLa cells, HBSS-induced lactate production and PDH phosphorylation were also observed in CL1.5, A431 and human umbilical vein endothelial cells. Taken together, we for the first time demonstrated that a low-nutrient condition drives cancer cells to utilize glycolysis to produce ATP, and this increases the Warburg effect through a novel mechanism involving ROS/AMPK-dependent activation of PDK. Such an event contributes to protecting cells from apoptosis upon nutrient deprivation. |
Date: | 2013-05 |
Relation: | Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2013 May;1833(5):1147-1156. |
Link to: | http://dx.doi.org/10.1016/j.bbamcr.2013.01.025 |
JIF/Ranking 2023: | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0167-4889&DestApp=IC2JCR |
Cited Times(WOS): | https://www.webofscience.com/wos/woscc/full-record/WOS:000317374500019 |
Cited Times(Scopus): | http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84874547293 |
Appears in Collections: | [Shine-Gwo Shiah] Periodical Articles
|
Files in This Item:
File |
Description |
Size | Format | |
SDO0167488913000402.pdf | | 1481Kb | Adobe PDF | 810 | View/Open |
|
All items in NHRI are protected by copyright, with all rights reserved.
|