English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 907396      Online Users : 946
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/7368


    Title: Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: Role of shear stress
    Authors: Zhou, J;Li, YS;Nguyen, P;Wang, KC;Weiss, A;Kuo, YC;Chiu, JJ;Shyy, JY;Chien, S
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: Rationale: Endothelial microRNA-126 (miR-126) modulates vascular development and angiogenesis. However, its role in the regulation of smooth muscle cell (SMC) function is unknown. Objective: To elucidate the role of miR-126 secreted by endothelial cells (ECs) in regulating SMC turnover in vitro and in vivo, as well as the effects of shear stress on the regulation. Methods and Results: Coculture of SMCs with ECs or treatment of SMCs with conditioned media from static EC monoculture (EC-CM) increased SMC miR-126 level and SMC turnover; these effects were abolished by inhibition of endothelial miR-126 and by the application of laminar shear stress to ECs. SMC miR-126 did not increase when treated with EC-CM from ECs subjected to inhibition of miR biogenesis, or with CM from sheared ECs. Depletion of extracellular/secreted vesicles in EC-CM did not affect the increase of SMC miR-126 by EC-CM. Biotinylated miR-126 or FLAG (DYKDDDDK epitope)-tagged Argonaute2 transfected into ECs was detected in the cocultured or EC-CM–treated SMCs, indicating a direct EC-to-SMC transmission of miR-126 and Argonaute2. Endothelial miR-126 represses forkhead box O3, B-cell lymphoma 2, and insulin receptor substrate 1 mRNAs in the cocultured SMCs, suggesting the functional roles of the transmitted miR-126. Systemic depletion of miR-126 in mice inhibited neointimal lesion formation of carotid arteries induced by cessation of blood flow. Administration of EC-CM or miR-126 mitigated the inhibitory effect. Conclusions: Endothelial miR-126 acts as a key intercellular mediator to increase SMC turnover, and its release is reduced by atheroprotective laminar shear stress.
    Date: 2013-06
    Relation: Circulation Research. 2013 Jun;113(1):40-51.
    Link to: http://dx.doi.org/10.1161/circresaha.113.280883
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0009-7330&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000320985200013
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84880272931
    Appears in Collections:[裘正健] 期刊論文

    Files in This Item:

    File Description SizeFormat
    ISI000320985200013.pdf5732KbAdobe PDF605View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback