國家衛生研究院 NHRI:Item 3990099045/7447
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 956262      線上人數 : 831
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/7447


    題名: A novel support vector machine-based approach for rare variant detection
    作者: Fang, YH;Chiu, YF
    貢獻者: Division of Biostatistics and Bioinformatics
    摘要: Advances in next-generation sequencing technologies have enabled the identification of multiple rare single nucleotide polymorphisms involved in diseases or traits. Several strategies for identifying rare variants that contribute to disease susceptibility have recently been proposed. An important feature of many of these statistical methods is the pooling or collapsing of multiple rare single nucleotide variants to achieve a reasonably high frequency and effect. However, if the pooled rare variants are associated with the trait in different directions, then the pooling may weaken the signal, thereby reducing its statistical power. In the present paper, we propose a backward support vector machine (BSVM)-based variant selection procedure to identify informative disease-associated rare variants. In the selection procedure, the rare variants are weighted and collapsed according to their positive or negative associations with the disease, which may be associated with common variants and rare variants with protective, deleterious, or neutral effects. This nonparametric variant selection procedure is able to account for confounding factors and can also be adopted in other regression frameworks. The results of a simulation study and a data example show that the proposed BSVM approach is more powerful than four other approaches under the considered scenarios, while maintaining valid type I errors.
    日期: 2013-08
    關聯: PLoS ONE. 2013 Aug;8(8):Article number e71114.
    Link to: http://dx.doi.org/10.1371/journal.pone.0071114
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1932-6203&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000323109700078
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84881360109
    顯示於類別:[邱燕楓] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    PLO2013090102.pdf717KbAdobe PDF418檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋