English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 934715      Online Users : 255
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/7642


    Title: Protective roles of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in Dengue Virus infection of human lung epithelial cells
    Authors: Hsu, YL;Shi, SF;Wu, WL;Ho, LJ;Lai, JH
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: Interferons (IFNs) are critical cytokines that regulate immune response against virus infections. Dengue virus (DV) infections are a major public health concern worldwide, and especially in Asia. In the present study, we investigated the effects and mechanisms of action of IFN-induced protein with tetratricopeptide repeats 3 (IFIT3) in human lung epithelial cells. The results demonstrated that DV infection induced expression of several IFITs, including IFIT1, IFIT2, IFIT3, and IFIT5 in A549 cells. Induction of IFIT3 by DV infection was also observed in human dendritic cells. In a knockdown study, we showed that a signal transducer and activator of transcription 2 (STAT2), but not STAT1 or STAT3, regulated DV-induced IFIT3 production. By using several different methods to evaluate cell death, we demonstrated that knockdown of IFIT3 led to cellular apoptosis. Furthermore, knockdown of IFIT3 induced the expression of several apoptotic regulators such as caspase 3, caspase 8, caspase 9, and Bcl-2-associated X protein (BAX). Such apoptotic effects and mechanisms were synergistically enhanced after DV infection. Moreover, under conditions of IFIT3 deficiency, viral production increased, suggesting an anti-viral effect of IFIT3. Interestingly, DV could suppress IFN-α-induced but not IFN-γ-induced IFIT3 expression, a phenomenon similar to the regulation of STATs by DV. In conclusion, this study revealed some mechanisms of IFIT3 induction, and also demonstrated the protective roles of IFIT3 following IFN-α production in DV infection of human lung epithelial cells.
    Date: 2013-11-04
    Relation: PLoS ONE. 2013 Nov 4;8(11):Article number e79518.
    Link to: http://dx.doi.org/10.1371/journal.pone.0079518
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1932-6203&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000326503400120
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84891921830
    Appears in Collections:[何令君] 期刊論文

    Files in This Item:

    File Description SizeFormat
    PLO2013112601.pdf1591KbAdobe PDF476View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback