English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 854036      Online Users : 1424
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/7734


    Title: Polymersomes conjugated with des-octanoyl ghrelin for the delivery of therapeutic and imaging agents into brain tissues
    Authors: Chen, YC;Chiang, CF;Chen, LF;Liao, SC;Hsieh, WY;Lin, WL
    Contributors: Division of Medical Engineering Research
    Abstract: The effective protection of the blood-brain barrier (BBB) from tight junctions and efflux transport systems ultimately results in the limited entry of 95% of drug/gene candidates, which are potentially beneficial for central nervous system (CNS) diseases. In order to enhance the brain-specific delivery, in this study we developed a targeting carrier system, which consists of poly(carboxyl ethylene glycol-g-glutamate)-co-poly(distearin-g-glutamate) (CPEGGM-PDSGM) polymersomes with the conjugation of des-octanoyl ghrelin. Des-octanoyl ghrelin across the BBB was reported to be unidirectional (blood-to-brain direction). However, there is no report about the conjugation of des-octanoyl ghrelin to a drug carrier system to confer the BBB targeting property through des-octanoyl ghrelin binding sites mediated endocytosis. To qualitatively and quantitatively investigate this carrier's properties, coumarin 6, Cy5.5 and met-enkephalin were individually encapsulated in these polymersomes. The experimental results showed that the cellular uptake was significantly higher for des-octanoyl ghrelin-conjugated polymersomes (GPs) than unconjugated polymersomes when co-incubated with the BBB cells. In addition, an enhanced accumulation in brain together with a reduced accumulation in liver and spleen was observed in animal study, indicating better brain selectivity for the GPs. In a hot-plate test, a significant inhibition of nociceptive response could be achieved for an intravenous injection of GPs encapsulated with met-enkephalin. The overall results demonstrated that GPs own a great potential for targeting delivery of drug across the BBB to treat CNS diseases.
    Date: 2014-02
    Relation: Biomaterials. 2014 Feb;35(6):2051-2065.
    Link to: http://dx.doi.org/10.1016/j.biomaterials.2013.11.051
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0142-9612&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000331018700027
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84890249205
    Appears in Collections:[其他] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP84890249205.pdf3638KbAdobe PDF451View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback