The use of benchmark dose (BMD) calculations for dichotomous or continuous responses is well established in the risk assessment of cancer and noncancer endpoints. In some cases, responses to exposure are categorized in terms of ordinal severity effects such as none, mild, adverse, and severe. Such responses can be assessed using categorical regression (CATREG) analysis. However, while CATREG has been employed to compare the benchmark approach and the no-adverse-effect-level (NOAEL) approach in determining a reference dose, the utility of CATREG for risk assessment remains unclear. This study proposes a CATREG model to extend the BMD approach to ordered categorical responses by modeling severity levels as censored interval limits of a standard normal distribution. The BMD is calculated as a weighted average of the BMDs obtained at dichotomous cutoffs for each adverse severity level above the critical effect, with the weights being proportional to the reciprocal of the expected loss at the cutoff under the normal probability model. This approach provides a link between the current BMD procedures for dichotomous and continuous data. We estimate the CATREG parameters using a Markov chain Monte Carlo simulation procedure. The proposed method is demonstrated using examples of aldicarb and urethane, each with several categories of severity levels. Simulation studies comparing the BMD and BMDL (lower confidence bound on the BMD) using the proposed method to the correspondent estimates using the existing methods for dichotomous and continuous data are quite compatible; the difference is mainly dependent on the choice of cutoffs for the severity levels.