國家衛生研究院 NHRI:Item 3990099045/7803
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 857815      在线人数 : 836
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/7803


    题名: Cationic gelatin nanoparticles for drug delivery to the ocular surface: In vitro and in vivo evaluation
    作者: Tseng, CL;Chen, KH;Su, WY;Lee, YH;Wu, CC;Lin, FH
    贡献者: Division of Medical Engineering Research
    摘要: To develop an effective ocular drug delivery carrier, we prepared two different charged gelatin nanoparticles (GPs) and evaluated particle size, surface charge, and morphology. The in vitro biocompatibility of GPs was assessed using human corneal epithelium (HCE) cells and in vivo safety by administering them as eye drops to New Zealand rabbits. The GPs prepared using type A gelatin were positively charged (GP(+), +33 mV; size, 180.6 +/- 45.7 nm). Water-soluble tetrazolium salt (WST)-1 assay showed that both GPs were nontoxic to HCE cells. The fluorescence intensity of HCE cells cultured with cationic GPs conjugated with a fluorescent dye was higher than that of the anionic GP-treated HCE cells. In vivo examination showed no serious irritation to the rabbit eyes. Furthermore, corneal thickness and ocular pressure in the eyes of the treated rabbits were similar to those in the eyes of normal rabbits. Microscopic examination of corneal cryosections showed widely distributed fluorescent nanocarriers, from the anterior to the posterior part of the cornea of the GP(+) group, and higher fluorescence intensity in the GP(+) group was also observed. In conclusion, GPs as cationic colloidal carriers were efficiently adsorbed on the negatively charged cornea without irritating the eyes of the rabbits and can be retained in the cornea for a longer time. Thus, GPs(+) have a great potential as vehicles for ocular drug delivery.
    日期: 2013-11
    關聯: Journal of Nanomaterials. 2013 Nov;2013:Article ID 238351.
    Link to: http://dx.doi.org/10.1155/2013/238351
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000329720500001
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84896139265
    显示于类别:[林峯輝] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI000329720500001.pdf3469KbAdobe PDF470检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈