English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 904067      Online Users : 824
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/7960


    Title: Cardiac fibrosis and heart failure caused by DsRed tetramers involves the induction of tissue inhibitor of metalloproteinase-1
    Authors: Chen, TH;Liu, SW;Chen, MR;Lin, KM
    Contributors: Division of Medical Engineering Research
    Abstract: Whereas aggregation of intracellular proteins was linked to the initiation of cardiac myopathy, the sequence of participating events, including myocyte apoptosis, autophagy, necrosis and fibrosis as the underlying mechanisms leading to heart failure, was not clear. Green fluorescent protein (GFP) and its derivatives induced cardiac dysfunction in mice when expressed in high quantity; however, the mechanism underlying the aggregation of fluorescent protein leading to heart failure remains unexplored.We created a transgenic mouse with switchable expression of the GFP monomer or the expression of DsRed, a red fluorescent protein (RFP) tetramer that tends to aggregate into a large protein complex. GFP mice were free of cardiac symptoms; in contrast, RFP mice with homozygous DsRed alleles developed myocyte necrosis, carditis, ventricular hypertrophy and fibrosis, left atrium thrombosis, dilated heart failure and death at the age of approximately five months. The hemizygote mice displayed similar symptoms at a later age. The expression of the microtubule-associated protein 1 light chain 3 cleaved isoform II (LC3 II) and transglutaminase 2, and the expression of many myopathy- and fibrosis-related genes were significantly induced in the hearts of two-month-old RFP mice. Together with the findings of increased autophagosomes, lysosomes and dysfunctional mitochondria, these results suggest a marked induction of myocyte autophagy and fibrosis as the main underlying mechanism of heart failure in RFP mice. Interestingly, apoptosis was not elevated in RFP hearts. One of the most up-regulated genes in the early stage RFP heart was the tissue inhibitor of matrix metalloproteinases type 1 (TIMP-1), corroborating the role of TIMP-1 in cardiac remodeling and anti-apoptotic activity. The heart-origin of the morbidity in RFP mice was confirmed by expressing DsRed tetramers specifically in cardiac tissues, and the same phenotypes as in RFP mice were observed. In summary, in cardiac myocytes under the stress of protein aggregation, strong induction of TIMP-1 and down-regulation of MMP activity may play a significant role in enhancing the synthesis of extracellular matrix, resulting in fibrosis and heart failure.
    Date: 2013-08
    Relation: Circulation Research. 2013 Aug;113(4):Abstract number 065.
    Link to: https://www.ahajournals.org/doi/10.1161/res.113.suppl_1.A065
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0009-7330&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000332063200062
    Appears in Collections:[林名釗] 會議論文/會議摘要

    Files in This Item:

    File Description SizeFormat
    ISI000332063200062.pdf41KbAdobe PDF605View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback