English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 854193      Online Users : 1545
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/7990


    Title: 5-methoxyindole metabolites of L-tryptophan: Control of COX-2 expression, inflammation and tumorigenesis
    Authors: Wu, KK;Cheng, HH;Chang, TC
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: Cyclooxygenase-2(COX-2) overexpression promotes inflammation and tumorigenesis. COX-2 expression in response to diverse stimuli is tightly controlled to avoid persistent overexpression. 5-methoxyindole metabolites of L-tryptophan represent a new class of compounds that control COX-2 expression at the transcriptional level. Two of the metabolites, the newly discovered 5-methoxytryptophan (5-MTP, also known as cytoguardin) and N-acetyl 5-methoxytryptamine (melatonin) are the focus of this review. 5-MTP is produced by mesenchymal cells such as fibroblasts via 5-hydroxytryptophan (5-HTP). It inhibits COX-2 transcriptional activation induced by diverse proinflammatory and mitogenic factors. Cancer cells are deficient in cytoguardin production which contributes to COX-2 overexpression. Fibroblast-generated 5-MTP is capable of restoring the control of COX-2 overexpression in cancer cells. 5-MTP blocks cancer cell migration and invasion in vitro and inhibits tumor growth and cancer metastasis in a xenograft model. Melatonin possesses similar COX-2 suppressing and anti-cancer properties albeit at supra-pharmacological concentrations. By contrast, 5-hydroxyindole metabolites of L-tryptophan such as 5-hydroxytryptamine (serotonin), 5-hydroxytryptophol and other serotonin catabolites do not control COX-2 expression. 5-hydroxytryptophan inhibits COX-2 expression through conversion to 5-MTP. The physiological relevance of 5-MTP as an endogenous regulator of inflammation and cancer metastasis remains to be investigated. On the other hand, 5-methoxyindole metabolites of tryptophan are valuable lead compounds for development of new anti-inflammatory drugs and cancer chemoprevention.
    Date: 2014-03-03
    Relation: Journal of Biomedical Science. 2014 Mar 3;21:Article number 17.
    Link to: http://dx.doi.org/10.1186/1423-0127-21-17
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1021-7770&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000334643400001
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84898540187
    Appears in Collections:[伍焜玉] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP84898540187.pdf601KbAdobe PDF654View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback