Chemical carcinogenicity is an important safety issue for the evaluation of drugs and environmental pollutants. The Ames test is useful for detecting genotoxic hepatocarcinogens. However, the assessment of Ames-negative hepatocarcinogens depends on 2-year rodent bioassays. Alternative methods are desirable for the efficient identification of Ames-negative hepatocarcinogens. This study proposed a decision tree-based method using chemical-chemical interaction information for predicting hepatocarcinogens. It performs much better than that using molecular descriptors with accuracies of 86% and 76% for validation and independent test, respectively. Four important interacting chemicals with interpretable decision rules were identified and analyzed. With the high prediction performances, the acquired decision rules based on chemical-chemical interactions provide a useful prediction method and better understanding of Ames-negative hepatocarcinogens.
Date:
2014-08
Relation:
9th IAPR International Conference on Pattern Recognition in Bioinformatics, PRIB 2014. 2014 Aug;8626 LNBI:1-9.