國家衛生研究院 NHRI:Item 3990099045/8432
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12189/12972 (94%)
造访人次 : 955233      在线人数 : 630
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/8432


    题名: Establishment of a trimodality analytical platform for tracing, imaging and quantification of gold nanoparticles in animals by radiotracer techniques
    作者: Chen, CH;Lin, FS;Liao, WN;Liang, SL;Chen, MH;Chen, YW;Lin, WY;Hsu, MH;Wang, MY;Peir, JJ;Chou, FI;Chen, CY;Chen, SY;Huang, SC;Yang, MH;Hueng, DY;Hwu, Y;Yang, CS;Chen, JK
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: This study aims to establish a 198Au-radiotracer technique for in vivo tracing, rapid quantification, and ex vivo visualization of PEGylated gold nanoparticles (GNPs) in animals, organs and tissue dissections. The advantages of GNPs lie in its superior optical property, biocompatibility and versatile conjugation chemistry, which are promising to develop diagnostic probes and drug delivery systems. 198Au is used as a radiotracer because it simultaneously emits beta and gamma radiations with proper energy and half-life; therefore, 198Au can be used for bioanalytical purposes. The 198Au-tagged radioactive gold nanoparticles (198Au-GNPs) were prepared simply by irradiating the GNPs in a nuclear reactor through the 197Au(n,gamma)198Au reaction and subsequently the 198Au-GNPs were subjected to surface modification with polyethylene glycol to form PEGylated 198Au-GNPs. The 198Au-GNPs retained physicochemical properties that were the same as those of GNP before neutron irradiation. Pharmacokinetic and biodisposition studies were performed by intravenously injecting three types of 198Au-GNPs with or without PEGylation into mice; the gamma radiation in blood specimens and dissected organs was then measured. The 198Au-radiotracer technique enables rapid quantification freed from tedious sample preparation and shows more than 95% recovery of injected GNPs. Clinical gamma scintigraphy was proved feasible to explore spatial- and temporal-resolved biodisposition of 198Au-GNPs in living animals. Moreover, autoradiography, which recorded beta particles from 198Au, enabled visualizing the heterogeneous biodisposition of 198Au-GNPs in different microenvironments and tissues. In this study, the 198Au-radiotracer technique facilitated creating a trimodality analytical platform for tracing, quantifying and imaging GNPs in animals.
    日期: 2015-01
    關聯: Analytical Chemistry. 2015 Jan;87(1):601-608.
    Link to: http://dx.doi.org/10.1021/ac503260f
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0003-2700&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000347590400061
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84920471776
    显示于类别:[陳仁焜] 期刊論文
    [楊重熙] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB25424326.pdf2978KbAdobe PDF601检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈