English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 848214      Online Users : 873
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/8468


    Title: Mono(2-ethylhexyl)phthalate accumulation disturbs energy metabolism of fat cells
    Authors: Chiang, HC;Kuo, YT;Shen, CC;Lin, YH;Wang, SL;Tsou, TC
    Contributors: Division of Environmental Health and Occupational Medicine
    Abstract: Phthalates are lipophilic and tend to accumulate in adipose tissue, an important regulator of energy balance and glucose homeostasis. The study aimed to determine whether cellular phthalate accumulation influenced fat cell energy metabolism. Following a 3-day treatment with adipogenesis-inducing medium and a 2-day treatment with adipogenesis-maintaining medium, 3T3-L1 cells differentiated into adipocytes in the presence of a phthalate at a clinically relevant concentration (30-300 muM) for another 6 days. Two phthalates, di(2-ethylhexyl)phthalate and di-n-butylphthalate, and their metabolites, mono(2-ethylhexyl)phthalate (MEHP) and mono-n-butylphthalate, were used here. The phthalate treatments caused no marked effect on cytotoxicity and adipogenesis. Only the MEHP-treated adipocytes were found having smaller lipid droplets; MEHP accumulated in cells in a dose- and time-dependent manner. The MEHP-treated adipocytes exhibited significant increases in lipolysis and glucose uptake; quantitative real-time polymerase chain reaction (qPCR) analysis revealed correlated changes in expression of marker genes involved in adipogenesis, lipid metabolism, and glucose uptake. Analysis of oxygen consumption rate (a mitochondrial respiration indicator) and extracellular acidification rate (a glycolysis indicator) indicated a higher energy metabolism in the adipocytes. qPCR analysis of critical genes involved in mitochondrial biogenesis and/or energy metabolism showed that expression of peroxisome proliferator-activated receptor gamma coactivator-1alpha, sirtuin 3, and protein kinase A were significantly enhanced in the MEHP-treated adipocytes. In vitro evidence of MEHP impacts on lipolysis, glucose uptake/glycolysis, and mitochondrial respiration/biogenesis demonstrates that MEHP accumulation disturbs energy metabolism of fat cells.
    Date: 2016-03
    Relation: Archives of Toxicology. 2016 Mar;90(3):589-601.
    Link to: http://dx.doi.org/10.1007/s00204-014-1446-9
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0340-5761&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000370343000008
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84958259742
    Appears in Collections:[王淑麗] 期刊論文
    [鄒粹軍] 期刊論文

    Files in This Item:

    File Description SizeFormat
    PUB25543134.pdf3180KbAdobe PDF602View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback