國家衛生研究院 NHRI:Item 3990099045/9209
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 915344      線上人數 : 1310
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/9209


    題名: Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion
    作者: Yen, SY;Chen, SR;Hsieh, J;Li, YS;Chuang, SE;Chuang, HM;Huang, MH;Lin, SZ;Harn, HJ;Chiou, TW
    貢獻者: National Institute of Cancer Research
    摘要: Glioblastoma multiforme (GBM) is the most common and aggressive brain tumour. The neoplasms are difficult to resect entirely because of their highly infiltration property and leading to the tumour edge is unclear. Gliadel wafer has been used as an intracerebral drug delivery system to eliminate the residual tumour. However, because of its local low concentration and short diffusion distance, patient survival improves non-significantly. Axl is an essential regulator in cancer metastasis and patient survival. In this study, we developed a controlled-release polyanhydride polymer loading a novel small molecule, n-butylidenephthalide (BP), which is not only increasing local drug concentration and extending its diffusion distance but also reducing tumour invasion, mediated by reducing Axl expression. First, we determined that BP inhibited the expression of Axl in a dose- and time-dependent manner and reduced the migratory and invasive capabilities of GBM cells. In addition, BP downregulated matrix metalloproteinase activity, which is involved in cancer cell invasion. Furthermore, we demonstrated that BP regulated Axl via the extracellular signal-regulated kinases pathway. Epithelial-to-mesenchymal transition (EMT) is related to epithelial cells in the invasive migratory mesenchymal cells that underlie cancer progression; we demonstrated that BP reduced the expression of EMT-related genes. Furthermore, we used the overexpression of Axl in GBM cells to prove that Axl is a crucial target in the inhibition of GBM EMT, migration and invasion. In an in vivo study, we demonstrated that BP inhibited tumour growth and suppressed Axl expression in a dose-dependent manner according to a subcutaneous tumour model. Most importantly, in an intracranial tumour model with BP wafer in situ treatment, we demonstrated that the BP wafer not only significantly increased the survival rate but also decreased Axl expression, and inhibited tumour invasion. These results contribute to the development of a BP wafer for a novel therapeutic strategy for treating GBM invasion and increasing survival in clinical subjects.
    日期: 2016-04
    關聯: Oncogene. 2016 Apr;35(17):2156-2165.
    Link to: http://dx.doi.org/10.1038/onc.2015.277
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0950-9232&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000374986000002
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84938891691
    顯示於類別:[莊雙恩] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    PUB26257061.pdf3232KbAdobe PDF426檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋