國家衛生研究院 NHRI:Item 3990099045/9595
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 906207      在线人数 : 793
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/9595


    题名: Spatial scan statistics for detection of multiple clusters with arbitrary shapes
    作者: Lin, PS;Kung, YH;Clayton, M
    贡献者: Division of Biostatistics and Bioinformatics
    摘要: In applying scan statistics for public health research, it would be valuable to develop a detection method for multiple clusters that accommodates spatial correlation and covariate effects in an integrated model. In this article, we connect the concepts of the likelihood ratio (LR) scan statistic and the quasi-likelihood (QL) scan statistic to provide a series of detection procedures sufficiently flexible to apply to clusters of arbitrary shape. First, we use an independent scan model for detection of clusters and then a variogram tool to examine the existence of spatial correlation and regional variation based on residuals of the independent scan model. When the estimate of regional variation is significantly different from zero, a mixed QL estimating equation is developed to estimate coefficients of geographic clusters and covariates. We use the Benjamini-Hochberg procedure (1995) to find a threshold for p-values to address the multiple testing problem. A quasi-deviance criterion is used to regroup the estimated clusters to find geographic clusters with arbitrary shapes. We conduct simulations to compare the performance of the proposed method with other scan statistics. For illustration, the method is applied to enterovirus data from Taiwan.
    日期: 2016-12
    關聯: Biometrics. 2016 Dec;72(4):1226-1234.
    Link to: http://dx.doi.org/10.1111/biom.12509
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0006-341X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000391932100022
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84960154040
    显示于类别:[林培生] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB26953633.pdf2732KbAdobe PDF613检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈