國家衛生研究院 NHRI:Item 3990099045/9654
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12274/13357 (92%)
造訪人次 : 1953800      線上人數 : 120
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/9654


    題名: Development of gelatin nanoparticles conjugated with phytohemagglutinin erythroagglutinating loaded with gemcitabine for inducing apoptosis in non-small cell lung cancer cells
    作者: Kuo, WT;Huang, JY;Chen, MH;Chen, CY;Shyong, YJ;Yen, KC;Sun, YJ;Ke, CJ;Cheng, YH;Lin, FH
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Gelatin is an efficient drug delivery vehicle for attaching targeting molecules like phytohemagglutinin erythroagglutinating (PHA-E) and carrying the chemotherapeutic agent gemcitabine (GEM). Fluorescent gelatin nanoparticles (GNPs) conjugated with PHA-E and carrying gemcitabine (GNP-(PHA-E)-GEM) were synthesized by nanoprecipitation for guiding gemcitabine-loaded gelatin nanoparticles to NSCLC by PHA-E targeting. GNPs have a uniform narrow size distribution and spherical shape, and their particle size is about 290 nm. The release rate of gemcitabine from nanoparticles reached the plateau of the curve at approximately 30% within 72 hours. PHA-E conjugated nanoparticles could enhance the cellular accumulation of nanoparticles. The results showed that GNP-(PHA-E)-GEM treatment caused an increase of cell growth inhibition and cytotoxicity on NSCLC cells A-549 and H292. In an Annexin V/PI assay, treatment with GNP-(PHA-E)-GEM could induce apoptosis of cancer cells. Treatment of NSCLC cells with GNP-(PHA-E)-GEM firstly resulted in time-dependent inhibition of epidermal growth factor receptor (EGFR) and Akt phosphorylation. And it also could increase p53 phosphorylation. And then it could decrease Bad phosphorylation and increase Bax. Finally, it could result in enhancing the release of cytochrome c, which thus increases caspase-9 and caspase-3. In conclusion, GNP-(PHA-E)-GEM could induce growth inhibition and cytotoxicity, which was mediated through inhibition of EGFR phosphorylation and the switching on of p53 that causes cell apoptosis of NSCLC cells A-549 and H292. It's significant to conjugate PHA-E for targeting cancer and inhibiting EGFR phosphorylation as it could decrease the dosage of gemcitabine, which reduces side effects on normal tissue. GNP-(PHA-E)-GEM has great potential for NSCLC treatment.
    日期: 2016-03
    關聯: Journal of Materials Chemistry B. 2016 Mar;4(14):2444-2454.
    Link to: http://dx.doi.org/10.1039/C5TB02598B
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2050-750X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000373442600007
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84962699055
    顯示於類別:[林峯輝] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    NBN2016050302.pdf3412KbAdobe PDF531檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋