國家衛生研究院 NHRI:Item 3990099045/9752
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12340/13424 (92%)
造访人次 : 2000434      在线人数 : 183
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/9752


    题名: Clozapine metabolites protect dopaminergic neurons through inhibition of microglial NADPH oxidase
    作者: Jiang, L;Wu, X;Wang, S;Chen, SH;Zhou, H;Wilson, B;Jin, CY;Lu, RB;Xie, K;Wang, Q;Hong, JS
    贡献者: Center for Neuropsychiatric Research
    摘要: BACKGROUND: Clozapine, an atypical antipsychotic medication, has been effectively used to treat refractory schizophrenia. However, the clinical usage of clozapine is limited due to a high incidence of neutropenia or agranulocytosis. We previously reported that clozapine protected dopaminergic neurons through inhibition of microglial activation. The purpose of this study was to explore the neuroprotective effects of clozapine metabolites clozapine N-oxide (CNO) and N-desmethylclozapine (NDC), as well as their propensity to cause neutropenia. METHODS: The primary midbrain neuron-glia culture was applied to detect the neuroprotective and anti-inflammatory effect of clozapine and its metabolites in lipopolysaccharide (LPS) and MPP(+)-induced toxicity. And the subsequent mechanism was demonstrated by gp91 (phox) mutant cell cultures as well as microgliosis cell lines. In vivo, to confirm the neuroprotective effect of clozapine and CNO, we measured the dopaminergic neuronal loss and rotarod motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-generated mouse Parkinson's disease (PD) model. The neutropenia or agranulocytosis of clozapine and its metabolites was illustrated by white blood cell count of the treated mice. RESULTS: We found that, in midbrain neuron-glia cultures, CNO and NDC were more potent than clozapine in protecting dopaminergic neurons against LPS and MPP(+)-induced toxicity. CNO and NDC-afforded neuroprotection was linked to inhibition of microglia-mediated neuroinflammation, as demonstrated by abolished neuroprotection in microglia-depleted cultures and their capacity of inhibiting LPS-induced release of proinflammatory factors from activated microglia. NADPH oxidase (NOX2) was subsequently recognized as the main target of CNO and NDC since genetic ablation of gp91 (phox) , the catalytic subunit of NOX2, abolished their neuroprotective effects. CNO and NDC inhibited NOX2 activation through interfering with the membrane translocation of the NOX2 cytosolic subunit, p47 (phox) . The neuroprotective effects of CNO were further verified in vivo as shown by attenuation of dopaminergic neurodegeneration, motor deficits, and reactive microgliosis in MPTP-generated mouse PD model. More importantly, unlike clozapine, CNO did not lower the white blood cell count. CONCLUSIONS: Altogether, our results show that clozapine metabolites elicited neuroprotection through inactivation of microglia by inhibiting NOX2. The robust neuroprotective effects and lack of neutropenia suggest that clozapine metabolites may be promising candidates for potential therapy for neurodegenerative diseases.
    日期: 2016-05-16
    關聯: Journal of Neuroinflammation. 2016 May 16;13:Article number 110.
    Link to: http://dx.doi.org/10.1186/s12974-016-0573-z
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1742-2094&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000375902000003
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85007417070
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB27184631.pdf1829KbAdobe PDF311检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈