國家衛生研究院 NHRI:Item 3990099045/9933
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 858582      線上人數 : 606
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/9933


    題名: Emerging roles of an innate immune regulator TAPE in Toll-like receptors, RIG-I-like receptors, and beyond
    作者: Ling, P;Cheni, KR;Kao, CC;Chuang, HC;Tan, TH
    貢獻者: Immunology Research Center
    摘要: Pattern-recognition receptors (PRRs) trigger innate immune defenses against pathogen infection via downstream signaling pathways linking to inflammation and cell-autonomous immunity like phagocytosis and autophagy. IKK family kinases, IKKα and IKKβ, function to relay PRR signals to proinflammatory cytokine production to amplify innate immune responses. TBK1, a non-canonical IKK kinase, links nucleic acid sensors to type I interferon induction against viral infection and also regulates the autophagic clearance of intracellular bacteria. TBK1-Associated Protein in Endolysosomes designated TAPE, also known as CC2D1A, is an innate immune regulator acting upstream of Trif to regulate the TLR3 and TLR4 pathways, or upstream of MAVS to regulate the cytosolic RIG-I-like receptor (RLR) pathways. To our best knowledge, TAPE is the first regulator implicated in both the endosomal TLR and cytosolic RLR pathways at such an early step. We are thus interested in investigating in vivo roles of TAPE in innate immunity and molecular mechanisms by which TAPE regulates TLRs, RLRs, and possibly other PRRs. TAPE conditional knockout (cKO) mice, in which TAPE is selectively disrupted in immune cells, have been generated for our study. Our results showed that upon influenza A virus infection, TAPE cKO mice exhibited a more severe mortality than wild type mice. Further, TAPE cKO mice were shown to be more susceptible to Salmonella Typhimurium infection but more resistant to LPS-induced septic shock. Notably, ex vivo results showed that TAPE was critical for the autophagic clearance of Salmonella Typhimurium. Together, our data support a critical role for TAPE in regulating innate immune defenses through TLRs, RLRs, and autophagy.
    日期: 2016-05
    關聯: Journal of Immunology. 2016 May;196(1 Suppl.):Meeting Abstract 202.35.
    Link to: http://www.jimmunol.org/content/196/1_Supplement/202.35
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0022-1767&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000380288302476
    顯示於類別:[譚澤華] 會議論文/會議摘要
    [莊懷佳] 會議論文/會議摘要

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI000380288302476.pdf22KbAdobe PDF406檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋