English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 851541      Online Users : 877
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/10860


    Title: Enhanced B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation contributes to ABCC1-mediated chemoresistance and glutathione-mediated survival in acquired topoisomerase II poison-resistant cancer cells
    Authors: Chen, HH;Chang, HH;Chang, JY;Tang, YC;Cheng, YC;Lin, LM;Cheng, SY;Huang, CH;Sun, MW;Chen, CT;Kuo, CC
    Contributors: Institute of Biotechnology and Pharmaceutical Research;National Institute of Cancer Research
    Abstract: Nuclear factor erythroid-2-related factor 2 (NRF2) mainly regulates transcriptional activation through antioxidant-responsive elements (AREs) present in the promoters of NRF2 target genes. Recently, we found that NRF2 was overexpressed in a KB-derived drug-resistant cancer cell panel. In this panel, KB-7D cells, which show acquired resistance to topoisomerase II (Top II) poisons, exhibited the highest NRF2 activation. To investigate whether NRF2 directly contributed to acquired resistance against Top II poisons, we manipulated NRF2 by genetic and pharmacological approaches. The result demonstrated that silencing of NRF2 by RNA interference increased the sensitivity and treatment with NRF2 activator decreased the sensitivity of KB and KB-7D cells toward Top II poisons. Further, increased B-Raf–mediated NRF2 gene transcription and HATs–mediated NRF2 protein acetylation activated NRF2 signaling in KB-7D cells. Moreover, increased binding of NRF2 to an ARE in the promoter of ATP-binding cassette subfamily C member 1 (ABCC1) directly contributed to Top II poison resistance. In addition, activation of NRF2 increased glutathione level and antioxidant capacity in KB-7D cells compared with that in KB cells; moreover, high glutathione level provided survival advantage to KB-7D cells. Our study is the first to show that aberrant NRF2 activation is via increased B-Raf–mediated NRF2 gene transcription and HATs–mediated NRF2 protein acetylation, which increases the acquired resistance and promote the survival of Top II poison-resistant cancer cells. Importantly, NRF2 downstream effectors ABCC1 and glutathione directly contribute to acquired resistance and survival, respectively. These results suggest that blockade of NRF2 signaling may enhance therapeutic efficacy and reduce the survival of Top II poison-refractory tumors in clinical.
    Date: 2017-12
    Relation: Free Radical Biology and Medicine. 2017 Dec;113:505-518.
    Link to: http://dx.doi.org/10.1016/j.freeradbiomed.2017.10.375
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0891-5849&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000415806800047
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85032692153
    Appears in Collections:[郭靜娟] 期刊論文
    [陳炯東] 期刊論文
    [張俊彥] 期刊論文

    Files in This Item:

    File SizeFormat
    SCP85032692153.pdf2024KbAdobe PDF347View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback