國家衛生研究院 NHRI:Item 3990099045/11812
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 850995      在线人数 : 374
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/11812


    题名: Transfer learning for predicting human skin sensitizers
    作者: Tung, CW;Lin, YH;Wang, SS
    贡献者: National Institute of Environmental Health Sciences
    摘要: Computational prioritization of chemicals for potential skin sensitization risks plays essential roles in the risk assessment of environmental chemicals and drug development. Given the huge number of chemicals for testing, computational methods enable the fast identification of high-risk chemicals for experimental validation and design of safer alternatives. However, the development of robust prediction model requires a large dataset of tested chemicals that is usually not available for most toxicological endpoints, especially for human data. A small training dataset makes the development of effective models difficult with insufficient coverage and accuracy. In this study, an ensemble tree-based multitask learning method was developed incorporating three relevant tasks in the well-defined adverse outcome pathway (AOP) of skin sensitization to transfer shared knowledge to the major task of human sensitizers. The results show both largely improved coverage and accuracy compared with three state-of-the-art methods. A user-friendly prediction server was available at https://cwtung.kmu.edu.tw/skinsensdb/predict. As AOPs for various toxicity endpoints are being actively developed, the proposed method can be applied to develop prediction models for other endpoints.
    日期: 2019-04
    關聯: Archives of Toxicology. 2019 Apr;93(4):931-940.
    Link to: http://dx.doi.org/10.1007/s00204-019-02420-x
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0340-5761&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000467645200007
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85062626096
    显示于类别:[童俊維] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85062626096.pdf960KbAdobe PDF258检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈