國家衛生研究院 NHRI:Item 3990099045/11812
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 911190      線上人數 : 935
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/11812


    題名: Transfer learning for predicting human skin sensitizers
    作者: Tung, CW;Lin, YH;Wang, SS
    貢獻者: National Institute of Environmental Health Sciences
    摘要: Computational prioritization of chemicals for potential skin sensitization risks plays essential roles in the risk assessment of environmental chemicals and drug development. Given the huge number of chemicals for testing, computational methods enable the fast identification of high-risk chemicals for experimental validation and design of safer alternatives. However, the development of robust prediction model requires a large dataset of tested chemicals that is usually not available for most toxicological endpoints, especially for human data. A small training dataset makes the development of effective models difficult with insufficient coverage and accuracy. In this study, an ensemble tree-based multitask learning method was developed incorporating three relevant tasks in the well-defined adverse outcome pathway (AOP) of skin sensitization to transfer shared knowledge to the major task of human sensitizers. The results show both largely improved coverage and accuracy compared with three state-of-the-art methods. A user-friendly prediction server was available at https://cwtung.kmu.edu.tw/skinsensdb/predict. As AOPs for various toxicity endpoints are being actively developed, the proposed method can be applied to develop prediction models for other endpoints.
    日期: 2019-04
    關聯: Archives of Toxicology. 2019 Apr;93(4):931-940.
    Link to: http://dx.doi.org/10.1007/s00204-019-02420-x
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0340-5761&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000467645200007
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85062626096
    顯示於類別:[童俊維] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85062626096.pdf960KbAdobe PDF260檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋